
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

Advisory Board: W. Brauer D. Gries J. Stoer

732

www.manaraa.com

Arndt Bode Mario Dal Cin (Eds.)

Parallel
Computer Architectures

Theory, Hardware, Software, Applications

Springer-Verlag Berlin Heidelberg GmbH

www.manaraa.com

Series Editors

Gerhard Goos
Universitat Karlsruhe
Postfach 6980
Vincenz-Priessnitz-StraBe 1
D-76131 Karlsruhe, Germany

Volume Editors

Arndt Bode
Institut flir Informatik, TU Mtinchen
Arcisstr. 21, D-80333 Miinchen, Germany

Mario Dal Cin

Juris Hartmanis
Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Institut flir Mathematische Maschinen und Datenverarbeitung
Lehrstuhl flir Informatik III
Martensstr. 3, D-91058 Erlangen, Germany

CR Subject Classification (1991): C.I-4, D.l, D.3-4, El.3

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag Berlin Heidelberg GmbH
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1993

Originally published by Springer-Verlag Berlin Heidelberg New York in 1993

Typesetting: Camera-ready by author

45/3140-543210 - Printed on acid-free paper

ISBN 978-3-540-57307-4 ISBN 978-3-662-21577-7 (eBook)
DOI 10.1007/978-3-662-21577-7

www.manaraa.com

Preface
Parallel computer architectures are now going to real applications! This fact
is demonstrated by the large number of application areas covered in this book
(see section on applications of parallel computer architectures). The applications
range from image analysis to quantum mechanics and data bases. Still, the use
of parallel architectures poses serious problems and requires the development of
new techniques and tools.

This book is a collection of best papers presented at the first workshop on two
major research activities at the Universitiit Erlangen-Niirnberg and Technis
che Universitiit Miinchen. At both universities, more than 100 researchers are
working in the field of multiprocessor systems and network configurations and
methods and tools for parallel systems. Indeed, the German Science Founda
tion (Deutsche Forschungsgemeinschaft) has been sponsoring the projects under
grant numbers SFB 182 and SFB 342. Research grants in the form of a Sonder
forschungsbereich are given to selected German Universities in portions of three
years following a thoroughful reviewing process. The overall duration of such a
research grant is restricted to 12 years. The initiative at Erlangen-Niirnberg was
started in 1987 and has been headed since this time by Prof. Dr. H. Wedekind.
Work at TU-Miinchen began in 1990, head of this initiative is Prof. Dr. A. Bode.
The authors of this book are grateful to the Deutsche Forschungsgemeinschaft
for its continuing support in the field of research on parallel processing.

The first section of the book is devoted to hardware aspects of parallel systems.
Here, a number of basic problems has to be solved. Latency and bandwidths
of interconnection networks are a bottleneck for parallel process communica
tion. Optoelectronic media, discussed in this section, could change this fact. The
scalability of parallel hardware is demonstrated with the multiprocessor system
MEMSY based on the concept of distributed shared memory. Scalable parallel
systems need fault tolerance mechanisms to garantee reliable system behaviour
even in the presence of defects in parts of the system. An approach to fault
tolerance for scalable parallel systems is discussed in this section.

The next section is devoted to performance aspects of parallel systems. Analyt
ical models for performance prediction are presented as well as a new hardware
monitor system together with the evaluation software.

Tools for the automatic parallelization of existing applications are a dream, but
not yet reality for the user of parallel systems. Different aspects for automatic
treatment of parallel applications are covered in the next section on architectures
and tools for parallelization. Dynamic load balancing is an application transpar
ent mechanism of the operating system to guarantee equal load on the elements
of a multiprocessor system. Randomized shared memory is one possible imple
mentation of a virtual shared memory based on distributed memory hardware.

www.manaraa.com

VI

Finally, optimizing tools for superscalar, superpipelined and VLIW(very long
instruction word)-architectures already cover automatic parallelization on the
basis of individual machine instructions.

The section on modelling techniques groups a number of articles on different
aspects of object oriented distributed systems. A distribution language, mem
ory management and the support for types, classes and inheritance are covered.
Formal description techniques are based on Petri nets and algebraic specification.

Finally, the section on applications covers knowledge based image analysis, dif
ferent parallel algorithms for CAD tools for VLSI design, a parallel sorting al
gorithm for parallel data bases, quantum mechanics algorithms, the solution of
partial differential equations, and the solution of a Navier Stokes solver based
on multigrid techniques for fluid dynamic applications.

Erlangen and Munchen, March 1993

Arndt Bode
Chairman SFB 342

Mario Dal Cin
SFB 182

Hartmut Wedekind
Chairman SFB 182

www.manaraa.com

Contents
Hardware Aspects of Multiprocessor Systems

Optoelectronic Interconnections
J. Schwider, N. Streibl, K. Ziirl (Universitiit Erlangen-Niirnberg) 1

MEMSY - A Modular Expandable Multiprocessor System
F. Hofmann, M. Dal Cin, A. Grygier, H. Hessenauer, U. Hildebrand,
C.-U. Linster, T. Thiel, S. Turowski (Universitiit Erlangen-Niirnberg) 15

Fault Tolerance in Distributed Shared Memory Multiprocessors
M. Dal Cin, A. Grygier, H. Hessenauer, U. Hildebrand, J. Honig,
W. Hohl, E. Michel, A. Pataricza (Universitiit Erlangen-Niirnberg) 31

Performance of Parallel Systems

Optimal Multiprogramming Control for Parallel Computations
E. Jessen, W. Ertel, Ch. Suttner (Technische Universitiit Miinchen) 49

The Distributed Hardware Monitor ZM4 and its Interface to MEMSY
R. Hofmann (Universitiit Erlangen-Nurnberg) 66

Graph Models for Performance Evaluation of Parallel Programs
F. Hartleb (Universitiit Erlangen-Nurnberg) 80

Architectures and Tools for Parallelization

Load Management on Multiprocessor Systems
Th. Ludwig (Technische Universitiit Miinchen) 87

Randomized Shared Memory - Concept and Efficiency of a Scalable
Shared Memory Scheme
H. Hellwagner (Siemens AG, Munchen) . " 102

Methods for Exploitation of Fine-Grained Parallelism
G. Bockle, Ch. Stormann, I. Wildgruber (Siemens AG, Miinchen) 118

Modelling Techniques

Causality Based Proof of a Distributed Shared Memory System
D. Gomm, E. Kindler (Technische Universitiit Munchen) 133

Object- and Memory-Management Architecture
- A Concept for Open, Object-Oriented Operating Systems -
J. Kleinoder (Universitiit Erlangen-Nurnberg) 150

www.manaraa.com

VIII

An Orthogonal Distribution Language for Uniform Object-Oriented
Languages
M. Faustle (Universitat Erlangen-Niirnberg) 166

Towards the Implementation of a Uniform Object Model
F. Hauck (Universitat Erlangen-Niirnberg) 180

FOCUS: A Formal Design Method for Distributed Systems
F. Dederichs, C. Dendorfer, R. Weber
(Technische Universitat Miinchen) .. 190

Applications of Parallel Systems

Parallelism in a Semantic Network for Image Understanding
V. Fischer, H. Niemann (Universitat Erlangen-Niirnberg) 203

Architectures for Parallel Slicing Enumeration in VLSI Layout
H. Spruth, F. Johannes (Technische Universitat Miinchen) 219

Application of Fault Parallelism to the Automatic Test Pattern
Generation for Sequential Circuits
P. Krauss, K. Antreich (Technische Universitat Miinchen) 234

Parallel Sorting of Large Data Volumes on Distributed Memory
Multiprocessors
M. Pawlowski, R. Bayer (Technische Universitat Miinchen) 246

Quantum Mechanical Programs for Distributed Systems: Strategies
and Results
H. Friichtl, P. Otto (Universitat Erlangen-Niirnberg) 265

On the Parallel Solution of 3D PDEs on a Network of Workstations
and on Vector Computers
M. Griebel, W. Huber, T. Stortkuhl, C. Zenger
(Technische Universitat Miinchen) .. 276

Numerical Simulation of Complex Fluid Flows on MIMD Computers
M. Perie, M. Schafer, E. Schreck
(Universitat Erlangen-Niirnberg) .. 292

Index 307

www.manaraa.com

Optoelectronic Interconnections

Johannes Schwider, Norbert Streibl, Konrad Ziirl
Physikalisches Institut der Universitiit Erlangen-Niirnberg

Staudtstr. 7, D-8520 Erlangen, Germany.

1 Bandwidth
The overall performance of data processing machines can be increased in two
ways: (i) by using faster system clocks and (ii) by using parallel systems consi
sting of a multitude of interconnected processing elements. In the near future
central aims of information technology are the development of teraflop (1012

floating point operations per second) supercomputers and switching networks
for telecommunications with terabit bandwidth.

With an acceleration of the system clock alone both of these aims cannot
be achieved. A data processing system contains three basic functions: (i) active
combining and switching of data, (ii) passive transport of data and (iii) storage
of data (which often is implemented by flip-flops, that is by active devices). In
quantum-electronics the fastest components are resonant tunneling diodes with
a response, measureable for example by nonlinear frequency mixing, beyond 1
THz [Sol 83]. These frequencies belong already to the far infrared region of
the electromagnetic spectrum. The simplest circuit, a ring oscillator consisting
of two connected active devices in a loop, runs at about 300 GHz [Bro 88].
Today somewhat more complex integrated circuits in GaAs-technology are in
research with on the order of 30 GBit/s bandwidth. Still more complex high
speed components, for example multiplexers and demultiplexers for fiber optical
links with some 10 GBit./s are commercial. Modern digital telephone exchanges
handle data with several hundred MBit/s. The characteristic data rate of a
personal computer, determined by the time required for memory access, is on
the order of 10 MBit/s. Consequently, one observes the trend summarized in
table 1: Although ultrafast devices do exist, complex systems are necessarily
slow.

The reason are the fundamental electromagnetic properties of electrical in
terconnections at high frequencies. If the wavelength of the electromagnetic
radiation (associated with t.he frequency content of the signals to be transpor
ted) and the length of the line have similar order of magnitude, a vast variety
of problems arises. Efficient screening is required to prevent crosstalk through
radiation. Standing waves, reflections and echoes occur unless all lines are cor
rectly terminated (which by the way is expensive in terms of energy). Impedance
matching and 'microwave design rules' are required for splitting and joining si
gnal lines. As a consequence, the fastest standard bus system (FutureBus II)
supports today only 100 MBit/s per line.

On the other hand, optics is good at communicating informations. Recently,
optoelectronical interconnections are an area of active research [Hase 84, Good

www.manaraa.com

2

Table 1: Complexity and speed of electronic systems

System bandwidth number of parts

resonant tunneling devices 3 THz 1
ring oscillator 0.3 THz 2
microwave Ie (GaAs) 0.03 THz several
telecommunications, supercomputer 0.0003 THz many
personal computer 0.00003 THz cheap

84, Kos 85, Berg 87, Sto 87, eha 91, Die 92, Bac 92, Par 92]. Optical beams
can freely cross through each other without interaction. Optics supports paral
lel interconnections, either through fiber bundles or through imaging systems.
Optocouplers are widely used for isolation and to prevent ground loops. Finally,
with state of the art optoelectronic devices the heat dissipation at the beginning
and the end of an interconnection can be very small, in contrast to the electro
nic line drivers, that must be large in order to move necessarily large currents.
Thus, the basic impedance matching problem is alleviated by the use of opti
cal interconnects [Mil 89]. Because performance or packing density (or both)
in modern electronics are limited by heat dissipation, the use of optoelectronics
should yield definite advantages.

Over long distances and at high data rates optical fibers have already sup
planted electrical connections. The basic question of the research in optoelectro
nic interconnections is: how short can optical interconnections be and still offer
advantages over electronics? It seem fairly clear, that high performance systems
will use optics for connections between modules and boards, lateron maybe even
between hybrids and chips. On the other hand, an all-optical computer looks
today as a worthwhile but maybe elusive aim of basic research.

2 Parallelism

Basically, parallel interconnections between a number of participants may have
different dimensionality: Fibres (or wires) are one-dimensional connections. A
printed circuit board, the wiring of gates on a chip or integrated optics offer
essentially two-dimensional interconnections. The number of bonding pads at
the edge of a chip scales with the linear dimension, the number of gates with
the area. Therefore, quasiplanar interconnections cause a bottleneck in a com
plex system because much fewer connections are available than active devices.
A good way out are three-dimensional interconnections through the 3D space
above the plane, where the active devices are located. Then the number of
interconnections and the number of devices scale essentially in the same way
with the area. A numerical example is worthwhile: If each channel requires
300 pm space and a chip or a connector has a overall size of 1 em, then with
two-dimenensional connections we obtain a parallelism of 32 channels/cm, but
with three-dimensional connections 32 x 32 = 1024 channels/ em2 . Hence, three
dimensional interconnections support highly parallel systems.

www.manaraa.com

3

Table 2: Parallel interconnection topologies

connection type #sources #receivers example schematic
ordered point to point 1 1 wire bundle 0---0

0---0
0---0
0---0

random point to point 1 switch fabric 0--<>

~
broadcasting, fan-out N clock distrib.

~
fan-in N 1 interrupt

~
bus N N bus system ~

reconfigurable N N telephone II g -- .

Optical communications is used across long distances, but in these applica
tions usually only one line is necessary. The shorter the distance the higher is
the required parallelism. Between subsystems and modules in a computer the
interconnections are provided by a bus, which has on the order of 100 parallel
lines. Modern chip packages have several hundred pins, hence optical chip to
chip interconnections are worthwhile only if a parallelism of on the order of 1000
lines is provided. Optical gate to gate interconnections become interesting only
if some 104 - 106 gates can be 'wired'.

As the degree of parallelism is increased, the data rate of the individual lines
decreases: whereas a single fiber optical communications line might run at 20
GBitjs, a bus system should run at the systems clock rate, that is on the order
of several 100 MBitjs in a high performance system. Otherwise different clocks
must be used within a single subsYRtem for computing and outside communicati
ons, which is not practical in many cases. Also the cost for time multiplexing in
terms of gate delays, space, heat dissipation and- last but not least-- money
is not negligible.

Another important feature that may serve to classify interconnection systems
is topology: As shown in table 2 there are a number of different parallel inter
connection topologies which are increasingly difficult to implement. The simplest
approach are ordered parallel point to point connections. The electronic imple
mentation is a number of parallel wires, optically they may be implemented by a
fiber bundle, a fiber ribbon cable or by an imaging system that images an array
of light sources onto a receiver array.

Somewhat more complicated are permutation elements, that is random point
to point interconections. They allow to change the geometrical order in a bundle
of parallel connections. Such permutations are required in many algorithms and
therefore in many special purpose machines, for example in sorting and searching
and therefore in switching networks and telephone exchanges (packet switch),
in fast data transformations such as the fast Fourier transform and therefore in
signal processors.

www.manaraa.com

4

Multipoint interconnection may allow (i) fan-out, i.e. broadcasting of a signal
from one source to several receivers, or (ii) fan-in, i.e. the listening of one
receiver into the signals transmitted by several receivers, or (iii) the combination
of fan-out and fan-in, i.e. the sharing of a common communications line by
several participants such as a bus line. Finally, and most complicated, there are
reconfigurable interconnections, where the 'wiring' of the participants can be
changed. A crossbar or a telephone exchange are examples of such a connection.

For all of these topologies optical implementations have been proposed in the
past, see for example [Hase 84, Good 84, Kos 85, Berg 87, Sto 87, Cha 91, Die
92, Bac 92, Par 92], some of which will be presented in the following.

3 Optical backplane

Optoelectronic interconnections between boards (distance x up to 1 m) and
integrated circuits (distance x on the order of 1 cm) based on a light guiding
plate have been widely studied (for example: Hase 84, Brenn 88, Herr 89, Jah
90, Haum 90, Cha 91, Par 92, Stre 93). They have been proposed to serve as
'optical backplane' or 'optical printed circuit board'. Fig. 1 shows the basic
optical setup for one single communication channel, which may be replicated for
parallel (multichannel) interconnections.

A thick plate of glass or polymer material is used to guide the optical signals.
It may be considered as an extremely multimodal waveguide or simply as free

)- electronic boards -(

.. ----........... -.-.. -....... -..... -....... -..... x

optical connector

,.--L--...

laser .t.t i
array ~

........ _._ - _ _ .. -

optical connector
,...--J-...

n

field mirror

Figure 1: (a) Principle of a light guiding plate. (b) a curved mirror between
the optical connectors on the light guiding plate images the transmitters onto the
recezvers.

www.manaraa.com

5

space 'filled' with transparent material. Its advantage in comparison to free
space communication is that it acts as a mechanically well defined base plate for
the 'optical connectors' and at the same time protects the optical signals from
external disturbances such as dust, air turbulence etc. Its advantage compared
to single mode waveguides is that the required tolerances and the alignment
problems are much less severe - at least as long as the detectors for the optical
signals are not too small.

A collimated beam from a semiconductor laser located on the optical connec
tor is deflected by a grating by a large angle t.p, coupled into the light guiding
plate, propagates towards the receiver via multiple reflections, is coupled out of
the plate by another grating at the second optical connector and detected by
the receiver. Holographically recorded volume phase gratings in dichromated
gelatine were reported to have excellent coupling efficiency (loss on the order of
less than 0.5 dB per coupler for slanted gratings with 45° deflection angle and
740 nm period at 786 nm wavelength) [Haum 90). Light guiding is achieved with
a loss on the order of 0.1 dB/cm. Point to point interconnections thus suffer
from losses on the order of 3- 10 dB, depending on the communication distance.

The simple setup of fig. la has two basic drawbacks: firstly, the beam is di
vergent due to diffraction at the aperture ofthe optical connector, which severely
limits the packing density for parallel channels; secondly, the deflection angle is
a function of the wavelength, which has as a consequence tight tolerance require
ments for the laser wavelengths. More specifically: For an interconnection length
L = x / sint.p within a light guiding plate with refractive index n and for light
with the wavelength .\ in vacuo a beam diameter of at least dmin ~ (L.\/n)1/2
is required in order to avoid excessive spreading of the beam by diffraction.
Adjacent parallel channels have to be separated from each other by a multiple
of this minimum beam diameter dmin in order to avoid crosstalk. Thus, for
board distances x of up to 1 m a packing density of not too much more than 10
channels/cm2 can be implemented with reasonable signal to noise ratio. Such
a low packing density is competitive with electronics only at extremely high
data rates. Specifically it also prohibits the use of monolithically integrated and
therefore densely packed laser and detector arrays.

The chromatic aberration (grating dispersion) makes the deflection angles
wavelength dependent and causes problems with 'aiming' the beams at the out
put couplers. Fabrication tolerances, mode hopping and thermal drift may lead
to significant differences in the wavelength of the individual semiconductor la
sers. For a deflection angle t.p ~ 45°, which is preferred in order to eliminate
the effects of thermal expansion of the light guiding plate, the distance of the
optimum position of the coupler and the wavelength have the same relative de
viation 8x / x ~ 28.\/.\. Hence, the cost for selecting and controling the laser
wavelength for interconnection distances of up to 1 m is prohibitive.

Both problems, diffractive broadening as well as chromatic aberration, can
be overcome by imaging [Stre 93). A field lens (or a mirror or a diffractive
zone plate) between the optical connectors can be used to image the apertures
of the transmitters onto those of the receivers. Fig. 1 b shows the principle of
such a parallel interconnection. The lasers of a laser array are collimated by a

www.manaraa.com

6

geometrically similar array of microlenses. An additional lens, whose function
may be incorporated into the coupling hologram, images all lasers onto one point
of the light guiding plate. There the vertex of the mirror is located that performs
the one to one imaging of the apertures of the microlenses and therefore acts
as the field lens. At the receiver site a completely symmetrical setup is used
to focus down onto the detectors. In practice the light guiding plate may be
thinner than shown in fig. lb, if the light path is folded by multiple reflections
as in fig. la. For long interconnections a chain of several lenses may be used to
relais the image.

Imaging guarantees, that light from each transmitter aperture is focused onto
the receiver aperture independently from small errors htp in its propagation di
rection - provided that the field lens is sufficiently large to catch the beam.
Therefore the chromatic aberration of the grating couplers is completely elimi
nated by this design. Also, the optical setup is completely symmetrical, which
eliminates all odd order monochromatic aberrations: specifically, the image is
free from geometrical distortion, which is important for array operation. Mo
reover, coma is corrected, which leads us to expect good image quality off axis.
Hence, the size of the arrays and thus the number of possible parallel channels
may be significant. At the optical connectors the system is 'telecentric', which
means that the principal rays for all channels are parallel. Thus only the an
gular alignment of the connectors is critical, the tolerances for displacement are
somewhat less severe. Also, the microlenses are used on axis which reduces ab
errations of the focal spots on the detectors. A full design of the optical setup
is given in [Stre 90] and includes aberration analysis. It is shown theoretically
for all interconnection distances up to 1 m and practically in a feasibility ex
periment for an interconnection of about 20 cm length, that within a field (=
cross section of the optical connector) of 1 cm2 some 1000 optical channels can
be transmitted in parallel.

Figure 2: Experim ental setup: Light guiding plate connecting two participants

www.manaraa.com

7

4 Optical bus
In a preceding section the difficulties of impedance matching at high data rates
were mentioned that are incurred with a bus system having many taps coup
ling signals in and out a common communications line. Consequently, at high
data rates, beyond some 100 MBit/s star couplers, i. e. broadcasting topologies
are employed instead of busses which is expensive. Also in much slower sy
stems, such as a multiprocessor, optical implementations of a bus is worthwhile
because of synchronicity: optical interconnections easily allow to control propa
gation delays down to picoseconds and are consequently very well suited for the
implementation of global synchronisation modules or dock distribution within
a multiprocessor system.

Bus lines are used in electronics to save complexity: instead of wiring N
participants with (N 2 - N)/2 individual communication lines, they all share
one common bus line. The power of each emitter has to be split into N parts
for the N listeners, which requires a multiple 1 : N beam splitter. Also each
listener must receive power from N different emitters, which might or might not
involve a second 1 : N beam splitting component. This beam combination on the
receivers involves basic physical questions [Krack 92] regarding the possibility of
loss less fan~in in singlemode systems. In a free space optical system an overall
theoretical efficiency of 1/(2N-1) compared to the absolute theoretical minimum
of l/N is achieved, if only one single beamsplitter is used for transmitters and
receivers simultaneously [Krack 92]. Fig. 3 shows an optical implementation
involving a Dammann grating [Damm 71] or a similar phase-only diffraction
grating as multiple beam splitter.

Each participant in a bus line has optical transmitters and receivers, and a
fiber link transporting the optical signals from the electronic board to an all~

Multiple Beam Splille.

Figure 3: Principle of an optical bus.

www.manaraa.com

8

UID

Figure 4: Fiber end plate for coupling fibers to an optical interconnect stage.

optical interconnection stage. The fibers end in a regular array in a fiber end
plate. Fig. 4 shows a photograph of such a device. It was fabricated by wet
chemical etching of V-grooves on both sides of silicon wafers in 100 orientation by
using KOH. These grooves can be applied very accurately with microlithographic
precision. In a selfaligned assembling procedure alternately a layer of fibers and
a grooved silicon plate are stacked onto each other. All components are glued
together and the fiber end plate is polished. In this wayan accurate array of
fibers can be fabricated.

The fibers allow a mechanically flexible coupling of many participants into a
highly accurate optical system without putting tight geometrical constraints on
the construction of the electronic system. Additionally it concentrates all signals
coming from different, possibly widely spaced participants within a tight volume
which can be handled with a compact optical system: for example the end plate
could have a size of 1 cm2 . Finally the fiber concentrator puts all the signals on
a well defined place in the plate with small tolerances. By using a telecentric one
to one imaging system the end plates are imaged onto each other. Without the
multiple beam splitter this imaging system would implement an ordered point
to point connection. However, in the filter plane a multiple beam splitter such
as a Dammann grating or a similar device is inserted, whose optical function is
shown in fig 5.

Such a grating has rectangular surface corrugations that are fabricated by
microlithographic methods. The component shown in fig. 5 was designed by
using nonlinear optimization, its structure was plotted by using a laser beam
writing system and it was etched into a fused silica substrate by using reactive
ion etching [Hasel 92]. By performing a diffraction experiment it can be seen
that one incoming beam of light is split into a multitude of beams, that is the
grating performs a fan-out. Similarly, since the optical system in fig. 4 is com
pletely symmetric the multiple beam splitter performs at the same time a fan- in
function. Consequently, at each outgoing fiber of the second endplate signals
of several input channels are superimposed, as well as the signal emerging from

www.manaraa.com

9

Figure 5: Surface struct?lore and diffraction pattern from a Dammann grating.

each incoming fiber is distributed to several listeners. The grating implements
a bus topology and serves as fan-out and fan-in element at the same time.

5 Optical switching
In telecommunications as well as in multiprocessors a problem of central im
portance is setting up reconfigurable interconnections. A switching matrix for

N participants implemented as a crossbar requires N 2 switches, as well as the
ability of each line to drive N switches (~ fan-out). In spite of this scaling, which
makes crossbars attractive only for a moderate number of participants optical
implementations have been proposed [Sto 87]. Massively parallel systems, such
as a telephone exchange, require to build up complexity by combining a multi
tude of (simple) components. Such a switching fabric is schematically shown in
fig 6.

Such multistage networks require much less switches than a crossbar, in some
cases O(N log N), and have been widely studied [Feng 81]. Typically they consist
of several stages with small crossbars (in the minimalistic case of the so called
shuffle exchange network 2 x 2 crossbars are used) and permutation elements
implementing a random wiring in between them. These global interconnections
between stages are fairly long and densely packed lines which are subject to
crosstalk and therefore well suited for optical replacements. Holographic optical
elements have been widely discussed for this purpose [Schw 92], fig. 7 shows the
principle.

In a demonstration setup for an optoelectronic switching network at the Uni
versity of Erlangen holographic permutation elements were used in conjunction
with 'smart detectors'. A minimal network consisting of three subsequent stages
with four parallel channels was implemented. From a PC, which served to gene
rate the transmitted data and check the received data for bit errors, an array of
lasers was driven to inject optical signals into the system. In the demonstration
discrete lasers were used and by a geometrically similar array of microlenses
collimated. In the near future it can be expected that monolithically integrated

www.manaraa.com

Input

~

'''1 I I I I I I
"'1 1·1 \ I ! I I

data header

... \ I I

optical
perfect shuffle

10

exchangel
bypass switch

Figure 6: Multistage switching network (alternating permutation/switch stages).

arrays of microlasers become available [Cold 92]. The parallely collimated laser
beams pass a holographic permutation element realized as volume holograms in
dichromated gelatine. This components implements firstly the perfect shuffle, i.
e. the global interconnection pattern between stages, and secondly it changes
the cross-section by reducing the distances between adjacent channels. Thus the
(large) pitch of the discrete laser array is matched to the (420 fJm small) pitch
of the receiver.

As a receiver an opto-ASIC, i. e. a custom designed optoelectronic CMOS
integrated circuit [Ziirl 92]' was used as a 'smart detector'. It contains photo
diodes, analog electronic amplification, digital circuits for implementing 2 x 2
crossbars and line drivers for electronic output. The packet switching network
was configured as a self-routing Batcher sorting network. This requires each 2 x
2 crossbar to be able to extract its switch setting from the incoming data. For
this purpose each node has a small finite state machine. Thus, the network does
not require central control. The photodiodes on the opto-ASIC are an interesting
part, because they do not belong to a standard CMOS process. Nevertheless a
good responsivity of 0.28 A/W can be achieved. After receiving and switching
the signals are transmitted into the next optical permutation element by means
of the next laser array. The complete setup is shown in fig. 8

The demonstration was running at 1 MBit/s (limited by the PC-interface
for data generation and measurement of bit error rate). It was possible to set
arbitrary non-blocking signal paths up and to reconfigure them.

In the long term light emitters (laser diode arrays) and receivers (,smart
detectors') should be mounted as near to each other as possible. Obviously,
today this can be achieved by building hybrid setups. Suitable projects are in
research [Bac 92].

www.manaraa.com

11

11
5
13

7

8 15
9 2
1O 1O
11
12 12
13 6
I~ 14
15 8
16 =~ r:::=- 16

Figure 7: Holographic permutation elements (a) principle (b) experiment with
beams passing a facetted volume hologram visualized by fluorescence.

Figure 8: Experim ental setup for a selfrouting multistage shuffle-exchange net
work with three subseqw:nt stages and four parallel channels.

In the future it is hoped that light emitters, receivers and digital electronic
can be integrated on the same common substrate in a monolithic fashion. Such
so-called 'smart pixels' would be a major breakthrough. The philosophy of
smart pixels is to have many small electronic processing 'islands' having optical
1/0s with optical connections between them. Optoelectronic switches, such as
the one shown above, could be implemented in a compact fashion as chip to
chip interconnections. By adding functionality to the switching nodes, very

www.manaraa.com

12

soon powerful processors can be envisioned. For example with the architecture
similar to a multistage network, simply by giving each node the ability to add
incoming numbers and to multiply them by a factor, a special purpose signal
processor can be built. It could be used for Fourier transformation and other
fast algorithms. In a similar approach (but with a different wiring diagram)
other massively parallel computer architectures such as systolic arrays or cellular
automata could be implemented optoelectronically by using smart pixels [Fey
92].

6 Conclusion

Optoelectronic interconnections are useful in short range interconnections, for
example within multiprocessor systems, for several reasons:

• high bandwidth of each individual channel (in excess of 1 GBit/s)

• high parallelism and packing density (in excess of 1000 channels/cm2)

• three-dimensional topology and global interconnection patterns

• broadcasting, signal distribution and bus topology at high speed

• synchronisation because all delays are exactly known

• no crosstalk along the line (only at the optoelectronic terminals)

• isolation prevents ground loops

• high impedance devices reduce heat dissipation for communications

• hopefully: integration with electronics towards 'smart pixels'

Several examples for optoelectronic interconnections, namely an optical back
plane, an optical bus and reconfigurable optoelectronic switches were presented.
This survey was by no means complete but had a more exemplary character.

In the literature there is not much doubt, that optical interconnections will
soon be useful within distributed systems, in multiprocessors and in telecom
munications. On the other hand, all-optical computers still require some major
breakthrough in optical switching devices or logic gates. As Chavel [Chav 91]
puts it: 'The only reason we can see at present to talk about an optical com
puter is not that anyone might need it or that there is a visible advantage to
it, but rather that nobody knows how much may still be expected from pr·ogress
in nonlinear optics and technology; the only reason we can see not to provide
optical interconnects to computers, at least at the board to board level is, that
electronic has a well established interconnect technology and optics does not, so
that meaningful practical issues like ruggedness, alignment tolerances have not
yet been adequately worked out. '

www.manaraa.com

13

References

[Bac 92] E.-J. Bachus, F. Auracher, O. Hildebrandt, B. Schwaderer: 'An ac
count of the German national joint programme PhotonikjOptical
Signal Processing', Proc. European Conference on Optical Commu
nication ECOC'92, Berlin 27.09.-01.10.92, VDE-Verlag, ISBN 3 -
8007 - 1897 - 9.

[Berg 87] L. A. Bergmann, W. H. Wu, R. Nixon, S. C. Esener, C. C. Guest, T.
J. Drabik, M. Feldman, S. H. Lee: 'Holographic optic interconnects
for VLSI', Opt. Eng. 25, 1109 (1986).

[Brenn 88] K.-H. Brenner, F. Sauer: 'Diffractive-reflective optical inter
connects', Appl. Opt. 27,4251 (1988).

[Bro 88] E.R. Brown et. al.: 'High speed resonant tunneling diodes', Proc.
SPIE 943, 2 (1988).

[Cha 91] P. Chavel and J. Taboury: 'On alleged and real advantages of optical
interconnects: examples', Annales de Physique, Colloque No.1,
supplement No.1, vol. 16, pp. 153, (1991).

[Cold 92] L.R. Coldren: 'Vertical cavity laser diodes:, Proc. European Confe
rence on Optical Communication ECOC'92, Berlin 27.09.-0l.10.92,
VDE-Verlag, ISBN 3 - 8007 - 1897 - 9.

[Damm 71] H. Dammann, K. Gortler: 'High efficiency in-line multiple imaging
by means of multiple phase holo;;rams', Opt. Comm. 2,312 (1971).

[Die 92] R. Diehl: 'Cooperative effort on optical interconnects in the Ger
man national program 'photonics' " Proc. European Conference on
Optical Communication ECOC'92, Berlin 27.09.-01.10.92, VDE
Verlag, ISBN 3 - 8007 - 1897 - 9.

[Feng 81] T. Feng: 'A survey of interconnection networks', IEEE Compo Dec.
1981, p. 12-27.

[Fey 92] D. Fey: 'Modellierung, Simulation und Bewertung digitaler opti
scher Systeme', Dissertation, Universitiit Erlangen-Niirnberg 1992.

[Good 84] J.W. Goodman, F.J. Leonberger, S.Y. Kung, R.A. Athale: 'Optical
Interconnections for VLSJ systems', Proc. IEEE 72, 850 (1984).

[Hase 84] Hase K. R.: 'Ein Beitrag zur Realisierung rechnerinterner opti
scher Bussysteme mit planaren Lichtleitern', Dissertation Univer
sitiit Duisburg 1984.

[Hasel 92] S. Haselbeck et. al.: 'Synthetic phase holograms written by laser
lithography', Proc. SPIE 1718 (1992).

www.manaraa.com

14

[Haum 90] H.J. Haumann et. al.: 'Optoelectronic interconnection based on a
light guiding plate wit.h holographic coupling elements', Opt. Eng.
30, 1620.

[Herr 89] J. P. Herriau, A. Deboulbe, P. Maillot, P. Richin, L. d'Auria, J.
P. Huignard: 'High speed interconnections - analysis of an optical
approach', Int. Symp. Optics in Computing Toulouse, France 1989.

[Jah 90] J. Jahns, A. Huang: 'Planar integration of free space optical com
ponents'. Appl. Opt. 28 (1990).

[Kos 85] R. K. Kost.uk, J. W. Goodman, L. Hesselink: 'Optical imaging ap
plied to microelectronic chip to chip interconnections', Appl. Opt.
24, 2851 (1985).

[Krack 92] U. Krackhardt, F. Sauer, W. Stork, N. Streibl: 'Concept for an op
tical bus-type interconnection network', Appl. Opt. 31,1730 (1992).

[Par 92] J. W. Parker: 'Opt.ical interconnections for electronics', Proc. Eu
ropean Conference on Opt.ical Communication ECOC'92, Berlin
27.09.-01.10.92, VDE-Verlag, ISBN 3 - 8007 - 1897 - 9.

[Schw 92] J. Schwider et. al.: 'Possibilities and limitations of spacevariant
holographic. optical elements for switching networks and general in
terconnects', Appl. Opt., accepted 1992.

[Sol 83] T. Sollner et. al.: 'Resonant tunneling through quantum wells at
2.5 THz', Appl. Phys. Lett. 43, 588 (1983).

[Sto 87] W. St.ork: 'Optical crossbar', Optik 76, 173 (1987).

[Stre 93] N. Streibl, R. Volkel, J. Schwider, P. Habel, N. Lindlein: 'Parallel
optoelectronic interconnections with high packing density through
a light. guiding plate uRing grating couplers and field lenseR', Opt.
Commun. submitted 1992.

[Ziirl 92] K. Ziirl, N. Streibl: 'Optoelectronic array interconnections', Opt.
Quant. Electron. 24,405 (1992).

www.manaraa.com

MEMSY
A Modular Expandable Multiprocessor System

F. Hofmann
hofmann@informatik.uni-erlangen.de

M. Dal Cin, A. Grygier, H. Hessenauer, U. Hildebrand,
C.-U. Linster, T. Thiel, S. Turowski

University of Erlangen-NOrnberg
IMMD, MartensstraBe 1/3

D-W 8520 Erlangen, Germany

Abstract. In this paper the MEMSY experimental multiprocessor system is
described. This system was built to validate the MEMSY architecture - a
scalable multiprocessor architecture based on locally shared-memory and
other communication media. It also serves as a study of different kinds of ap
plication programs which solve a variety of real problems encountered in sci
entific research.

1 Introduction

Among the different kinds of multiprocessor systems, those with global shared
memory are normally the ones most liked by application programmers because of
their simple programming model. Closer examination of typical problems reveals
that, for a broad class of these problems, global shared-memory is not what is really
needed by the application. Local shared data is sufficient to solve the problems.

Multiprocessors with global shared-memory all suffer from a lack of scalability.
By making clever use of fast buses and caching techniques this effect may be post
poned, but each system has an upper limit on the number of processing nodes.

Our MEMSY system is now an approach towards a scalable MIMD multiproces
sor architecture which utilizes memory shared between a set of adjacent nodes as a
communication medium. We refer to this kind of shared-memory as distributed
shared-memory.

The MEMSY system shall continue the line of systems which have been built at
Erlangen using distributed shared-memory. The basic aspects of this architecture
are described in [2] and [3].

2 MEMSY Architecture

2.1 Design Goals

The MEMSY architecture was defined with the following design goals in mind:

• economy The system should be based on off-the-shelf components we can buy;
only some parts should need to be designed and built by us.

www.manaraa.com

16

• scalability The architecture should be scalable with no theoretical limit. The com
munication network should grow with the number of processing ele
ments in order to accommodate the increased communication demands
in larger systems.

• flexibility The architecture should be usable for a great variety of user problems.
• efficiency The system should be based on state-of-the-art high performance mi

croprocessors. The computing power of the system should be big
enough to handle real problems which occur in scientific research.

2.2 Topology of the MEMSY System

The MEMSY structure consists of two planes. In each plane the processor nodes
form a rectangular grid. Each processor node has an associated shared-memory
module. which is shared with its four neighbouring processor nodes. The grid is
closed to a torus.

One processing element of the upper plane has access to the shared-memory mod
ules of the four processing elements directly below it, thereby forming a small pyr
amid. There are four times as many processing elements in the lower plane than in
the upper.

A-plane

C-pJane

B-plaoe

_ memory sharing within a plane
- memory sharing between planes
- commonbus

Fig. 2.1 Topology of the MEMSY system (Torus connections are missing)

On top of the whole system there is an optional processor which may serve as a
front-end to the system.

www.manaraa.com

17

The basic idea behind this structure is this: the lower plane does the real work
and the upper plane feeds the lower plane with data and offers support functions.

A subset of the processor nodes has access to one or more common bus systems
to allow communication over greater distances or broadcasts.

3 Hardware Architecture of MEMSY

The experimental memory-coupled multiprocessor system MEMSY consists of
three functional units:

• 4 + 16 processor nodes,
• one shared-memory module at each node, which is called the communication

memory and
• the interconnection network which provides the communication paths between

processor nodes and communication memories.

In addition to these essential units which are described in the following sections, an
FDDI net, a special optical bus and a distributed interrupt coupling system are inte
grated in the system. The FDDI net allows testing and use of another communication
media. The optical bus is designed to support various global synchronisation mech
anisms. The interrupt coupling system establishes interrupt connections between
every two immediate-neighbour nodes which share a communication memory.

3.1 Processor Nodes

Each node of the MEMSY system is identically designed and consists of a Motorola
multiprocessor board MVME188 and additional hardware, some of which were de
signed and implemented as part of the MEMSY project. In figure 3.1, which shows
the logical node structure, these parts have a lighter background colour.

The MVME188 board used in the MEMSY system consists of four VME mod
ules. These are; the system controller board, holding e.g. timers and serial interfac
es; two memory boards, each holding 16M bytes local memory; and the main logic
board, carrying the processor module.

The processor module comprises four MC88100 RISC CPUs, which have multi
ple internal parallelism, and eight MC88204 cache and memory management units
(CMMU), which provide 8*64K bytes cache memory. Special features of the pro
cessor module are:

• Cache coherency is supported by the hardware.
• There exists a cache copyback mode which writes data back to memory only if

necessary and a write-through mode.
• There exists an atomic memory access which is necessary for efficiently imple

menting spinlocks and semaphores in a multiprocessor environment.
• The caches provide a burst mode which allows atomic read/write access of four

consecutive words l while supplying only one address.

www.manaraa.com

18

The architecture of the processor module, the MVME188 board and the M88000
RISe product2 are described in greater detail in [9].

All VME modules mentioned above, are interconnected by a high speed local
bus. Each node can be extended with additional modules via this local bus or the
VME bus. The communication memory interface is attached to the local bus. Its
function is to recognize and execute accesses to the communication memories. The
interface hardware provides three ports to which the communication memories are
connected either directly or via an interconnection network. This interconnection
network is described in section 3.2.

To the M88000 the memory interface looks like a simple memory module. The
address decoder of the MVME188 is configured in such way, that the highest two
address bits determine whether the address space of the local memory boards, of the
VME bus or of the memory interface is accessed. In case of the memory interface,
the next two address bits determine the port which should be used for each memory
access. Four further bits of the address determine the path through the coupling unit
and which communication memory is to be accessed.

------------------------------, , ,

Pig. 3.1 Logical node structure

Addresses and data are transferred in multiplexed mode. The connection is 32
data bits plus four parity bits wide for the address or data transfer. The parity bits
are generated by the sender and checked by the receiver. If the communication mem
ory detects a parity error in address or data, it generates an error signal, otherwise
a ready signal is generated. If the memory interface receives an error signal or de
tects a parity error during a read access it transmits an error signal to the M88000,
otherwise a ready signal is sent.

1. A word is always 32 bit wide.
2. The combination of MC88100 and MC88204 is referred to a. the M88000 RISC

product.

www.manaraa.com

19

The memory interface hardware supports the atomic memory access and the de
scribed burst mode. Counters have been included in the interface hardware to count
the various types of errors in order to investigate the reliability of the connection.
The counters can be read and reset by a processor. In addition there is a status reg
ister which contains information about the last error occurred. This can be used in
combination with an error address register to investigate the error.

In addition, the memory interface contains a measurement interface to which an
external monitor can be connected. A measurement signal is triggered by a write ac
cess to a particular register of the memory interface and the 32-bit word written is
transferred to the monitor. This enables the use of hybrid monitors for measure
ments on MEMSY. Refer to [5] for further information on this topic.

3.2 The Interconnection Network

The topology of MEMSY is described in section 2.2. Each node has access to its
own communication memory and to the communication memories of the four neigh
bouring nodes. Additionally, every node of the B-plane has access to the communi
cation memories of its four assigned A-plane-nodes.

a b c d e f g h

k

m

n

o

p

q

r

a b c d e f g h

o processor node D communication memory a ,,,plio, om'

Fig. 3.2 Composition of processor nodes, communication
memories and coupling units

www.manaraa.com

20

A static implementation of this topology requires up to 9 ports at each node and
up to 6 ports at each communication memory. To reduce this complexity and the
number of interconnections, a dynamic network component, called coupling unit,
has been developed. The use of the coupling unit reduces the number of ports need
ed at the memory interface and the communication memory to three. Only two of
these ports are used for the connections within a plane. The coupling unit supports
the virtual implementation of the described MEMSY topology.

The coupling unit is a blocking, multistage, dynamic network with fixed size
which provides logically complete interconnection between 4 input ports and 4 out
put ports. The interconnection structure of MEMSY is a hybrid network with global
static and local dynamic network properties.

The torus topology of a single MEMSY plane is implemented by the arrangement
of nodes, communication memories, and coupling units as shown in figure 3.2. For
reasons of complexity the local dynamic network component is not depicted in this
figure. It is described in more detail in the next section.

Each node and each memory module is connected to two coupling units. Thus the
nearest-neighbour torus topology can easily be established. A square torus network
with N=n2 nodes requires N/2 coupling units. The connections from the nodes of the
B-plane to the four corresponding communication memories of the A-plane are also
implemented by using coupling units. These are connected to the third ports.

Internal Structure of the Coupling Unit. The hardware component used to im
plement a multiprocessor system, as described above, is shown in figure 3.3. In our
implementation of the interconnection network, accesses to the communication
memories via coupling units are executed with a simple memory access protocol.
The interconnection network operates in a circuit-switching mode by building up a
direct path for each memory access between a node and a communication memory.

• input or processor port

• output or memory port

active switch settings

Fig. 3.3 Internal structure of a coupling unit

www.manaraa.com

21

A coupling unit consists of the following subcomponents:

• 4 p-ports which allow the access to the coupling unit from nodes
• 4 m-ports which provide the connection of communication memories
• 4 internal subpaths which perform data transfer within the coupling unit
• 1 control unit which controls the dynamic interconnection between p-ports and

m-ports
• 4 switching elements which provide the dynamic interconnection of p-ports and

m-ports

The structure of the p-ports and m-ports is basically identical to a memory interface
with a multiplexed 32 bit address / data bus. The direction of the control flow is dif
ferent for p-ports and m-ports. An activity (a memory access) can be only initiated
at a p-port.

The control unit is a central component within the coupling unit. It always has
the complete information about the current switch settings of all switching ele
ments. If a new request is recognized by receiving a valid address, the control unit
can decide at once whether the requested access can be performed or has to be de
layed. For any access pattern the addressed memory port and all necessary internal
subpaths are available when all switching elements contained in the communication
path to be built-up are either inactive or possess exactly the switch settings required
for the establishment of the interconnection.

The necessary switch settings of all required switching elements are fixed a priori
for every possible access pattern. The decision about the performability of a re
quested access is made by comparing the required switch settings with the current
ones.

It can be seen from the structure of the coupling unit that two different commu
nication paths containing disjoint sets of internal subpaths can be selected for a
memory access. This results from the arrangement of the switching elements in a
ring configuration interconnected by the internal subpaths. The decision as to which
of the possible communication paths is to be established is made dynamically ac
cording to the current switch settings. If possible, the communication path requiring
fewer internal subpaths is chosen to minimize the propagation delay caused by the
switching elements.

The feature of the coupling unit which allows alternative communication paths is
important in the context of fault tolerance. This is discussed in [1].

Performance of the Interconnection Network. An access to shared data in the
communication memories requires a significantly higher access time than an access
within the node. In addition to the fact that the reduction in access time caused by
using a cache is generally no longer possible, the longer transfer paths and the exe
cution of control mechanisms cause further delays. The sequentialization which can
be required when conflicts occur either in the communication memories or in the
coupling units can cause additional waiting times. The memory access time in our
implementation is normally 1 J.!s and up to 1.3 J.!s if blocking occurs due to a quasi
simultaneous access.

www.manaraa.com

22

Since only data which is shared by nodes is held in the communication memories,
such as boundary values of subarrays, the increased access time has only a small in
fluence on the overall computing time. Measurements made using the test system
INES [4] specially developed to measure the performance of the coupling hardware
show that a high efficiency can be achieved under realistic conditions. Thus reduc
ing the complexity of the network by using coupling units causes only a small re
duction in performance compared to a static point to point network.

4 Programming Model

The programming model of the MEMSY system was designed to give the applica
tion programmer direct access to the power of the system. Unlike in many systems,
where the programmer's concept of the system is different from the real structure of
the hardware, the application programmer for MEMSY should have a concept of the
system which is very close to its real structure. In our opinion this enables the pro
grammer to write highly efficient programs which make the best use of the system.

In addition, the programmer should not be forced to a single way of using the sys
tem. Instead, the programming model defines a variety of different mechanisms for
communication and coordination3. From these mechanisms the application pro
grammer may pick the ones which are best suited for his particular problem.

The programming model is defined as a set of library calls which can be called
from C and C++. We choose these languages for the following reasons:

(1) Only languages which have some kind of a 'pointer' make it possible to imple
ment the routines, which access the shared-memory, as library calls. Otherwise
costly extensions to the languages would have been needed.

(2) The C compiler is available on every UNIX system. As it is also used to develop
the operating system itself, more effort is taken by the manufacturer to make
this compiler bug-free, stable and have it generate optimized code.

(3) Compared to programs using index references, programs using pointer referenc
es can lead to more efficient machine code.

The MEMSY system allows different applications to run simultaneously. The oper
ating system shields the different applications from one another.

To make use of the parallelism of each processing unit, the programmer must
generate multiple processes by the means of the 'fork' system call.

4.1 Mechanisms

The following sections introduce the different mechanisms provided by the pro
gramming model.

3. We use the term coordination instead of synchronization to express that not the si
multaneous occurring of events (e.g. accesses to common data structures) is meant
but their controlled ordering.

www.manaraa.com

23

Shared-Memory. The use of the shared-memory is based on the concept of 'seg
ments', very much like the original shared-memory mechanism provided by UNIX
System V. A process which wants to share data with another process (possibly on
another node) first has to create a shared-memory segment of the needed size. To
have the operating system select the correct location for this memory segment, the
process has to specify with which neighbouring nodes this segment needs to be
shared.

After the segment has been created, other processes may map the same segment
into their address space by the means of an 'attach' operation. The addresses in
these address spaces are totally unrelated, so pointers may not be passed between
different processes. The segments may also be unmapped and destroyed dynamical
ly.

There is one disadvantage to the shared-memory implementation on the MEMSY
system. To ensure a consistent view over all nodes the caches of the processors must
be disabled for accesses to the shared-memory. But the application programmer may
enable the caches for a single segment ifhe is sure that inconsistencies between the
caches on different nodes are not possible for a certain time period. The inconsis
tencies are not possible if only one node is using this segment or if this segment is
only being read.

Messages. There are two different message mechanisms which are offered by the
programming model: the one described in this section and the one named 'trans
port', described later.

This message mechanism allows the programmer to send short (2 word) messages
to another processor. The messages are buffered at the receiving side and can be re
ceived either blocking or non-blocking. They are mainly used for coordination.
They are not especially optimized for high-volume data transfer.

Semaphores. To provide a simple method for global coordination, semaphores
have been added to the programming model. They reside on the node on which they
have been created, but can be accessed uniformly throughout the whole system.

Spinlocks. Spinlocks are coordination variables which reside in shared-memory
segments. They can be used to guard short critical sections. In contrast to the other
mechanisms this is implemented totally in user-context using the special machine
instruction 'XMEM'. The main disadvantage of the spinlocks is the 'busy-wait' per
formed by the processor. This occurs if the process fails to obtain the lock and must
wait for the lock to become free. To minimize the effects of programming errors on
other applications, a time-out must be specified, after which the application is ter
minated (there is a system-imposed maximum for this time-out).

www.manaraa.com

24

Transport. The transport mechanism was designed to allow for high volume and
fast data transfer between any two processors in the system. The operating system
is free to choose the method and the path this data is to be transferred on (using
shared-memory, FDDI-ring or bus). It can take into account the current load of the
processing elements and data paths.

110. Traditional UNIX-I/O is supported. Each processing element has a local data
storage area. There is one global data storage area which is common to all process
ing nodes.

Parallelism. To express parallelism the programmer has to create multiple pro
cesses on each processing element by a special variant of the system call 'fork'.

Parallelism between nodes is handled by the configuration to be defined: One ini
tial process is started by the application environment on each node that the applica
tion should run on. In the current implementation these processes are identical on
all nodes.

Information. The processes can obtain various information from the system re
garding their positions in the whole system and the state of their own or other nodes.

4.2 Development

The programming model is open for extensions which will be based on experiences
we gain from real applications. Specific problems will show whether additional
mechanisms for communication and coordination are needed and how they should
be defined.

5 Operating System Architecture

Various considerations have been made as to which operating system should be cho
sen. Basically there are two choices:

• Design and implement a completely new operating system or
• use an existing operating system and adapt it to the new hardware.

By designing a new operating system the whole hardware can be completely inte
grated and supported. Better fitting concepts than those found in existing implemen
tations can be developed. But it must not be underestimated, that implementing a
new operating system requires a lot of time and effort. The second choice offers a
nearly ready-to-run operating system, in which only the adaptions to the additional
hardware have to be made.

For MEMSY the second choice was taken and Unix was chosen as the basis for
MEMSOS, the operating system ofMEMSY. Unix supplies a good development en
vironment and many useful tools. The multitasking I multiuser feature of Unix is
included with no additional effort.

www.manaraa.com

25

On each processor node we use the UNIX SYSTEM V/88 Release 3 of MOTOR
OLA, which is adapted to the multiprocessor architecture of the processor board.
The operating system has a peer processor architecture, meaning that there is no
special designated processor, e.g. master processor. Every processor is able to exe
cute user code and can handle all I/O requests by itself. The kernel is divided into
two areas. One area contains code that can be accessed in parallel by all processors,
because there is either no shared data involved or the mutual exclusion is achieved
by using fine grain locks. The second area contains all the other code that can not
be accessed in parallel. This area is secured with a single semaphore. For example,
all device drivers can be found here. In SYSTEM V/88 the usual multiprocessor
concepts are implemented, such as message-passing, shared-memory, interproces
sor communication and global semaphores. See [8] for more details.

5.1 Extensions

For the implementations of the above mentioned multiprocessor concepts the as
sumption has been made that all processors share a global main memory. But the
operating system is not able to deal with distributed memory such as our communi
cation memory. Therefore certain extensions and additions have been made to the
operating system. Only little changes have been made to the kernel itself. Standard
Unix applications are runnable on MEMSY because the system-call interface stayed
intact.

Integration of the additional hardware, particularly the communication memories
and the distributed interrupt-system, was one of the first steps. One of the next steps
made was the implementation of basic mechanisms for all sorts of communication
and coordination, which depend on the shared-memory. On top of these mechanisms
most of our other extensions are built. The Unix system-call interface was extended
by additional system calls, as described in section 4.1.

In the following sections only some of the extensions are described. Our concept
for support of user programs and a hierarchy of communication mechanisms using
the distributed shared-memory is introduced.

Support of Distributed User Programs. Various demands on high-performance
multiprocessor systems are made by the users. A system should be highly available
and easy to use. There should be as little interference with other user programs as
possible and the computing power should always be the maximum available. For
their programs users demand the usual, or even an enlarged functionality, short
start-up times and the possibility of interactive testing.

The Application Concept. In MEMSOS most of the users' needs are supported by
the realization of our application concept. We define the set of all processes belong
ing to one single user program as an application. An application can be identified
by a unique application number. Different applications running on MEMSY are dis
tinguishable by that number. Single application processes, called tasks, inherit the

www.manaraa.com

26

application number and are assigned a task number, which is a serial number unique
for this application and processor node. So an application task can be identified by
its application number, task number and node number.

At system initialization time one outstanding application is created. This initial
application, the master application, is made up of application daemons running on
each node and a single master application daemon, which may be distributed. All
daemons communicate with each other. It is the purpose of these daemons to create
the user applications on demand and to keep track of them. For each new application
the master daemon allocates a free, unique application number. As the first task of
each application the application leader task is started on each node by the other dae
mons. The leader task creates the application environment and all subsequent tasks.
It supervises the execution of the application tasks on that node it is running on and
communicates with all leader tasks of the same application. The leader tasks act as
agents to the master application.

This simple application concept makes it possible to easily control and monitor
distributed user programs. Because single applications can be distinguished from
one another, more than one application can be allowed to run in parallel on MEMSY.
By changing the processor binding and process/task scheduling more efficiency can
be achieved.

Processor Binding and Process Scheduling. In the SYSTEM V/88 operating sys
tem each processor can have its own assigned process run queue which it prefers to
use. Each Unix process is bound to a certain run queue. During a process switch the
binding can be changed. The run queue, bound to a processor, can also be changed
depending on system work load. In the original implementation (R32V3.0) there
was only one run queue for all processors assigned, although more run queues could
have been possible. See [7] for more details.

To support applications more efficiently the processor binding and the number of
run queues was altered. In our implementation there exists one system run queue for
all system processes, which is bound to one of four processors. For each application
running on a node an application run queue, local to that node, will be created.
These application run queues are handled by the remaining processors. The binding
is not static and can be changed dynamically.

Additionally a new concept called gang scheduling has been realized. Each ap
plication is assigned an application priority. The tasks of the application with the
highest priority will be scheduled first. The application priority can change dynam
ically, depending on the system work load. The system workload is supervised by a
distributed scheduler process, which will change application priorities and proces
sor binding accordingly.

Interrupt Mechanism. As shown in section 3.2 the access time to the communi
cation memory is higher than, for example, to the local memory. To use polling
mechanisms on the communication memory is therefore very inefficient and must
be avoided, at least in the kernel. Because of this an interrupt connection between

www.manaraa.com

27

nodes is necessary. This connection is made only between those immediate nodes
which share a communication memory. We use a special hardware, supported by
software, to generate these inter-node interrupts.

With every interrupt triggered a word is provided at a defined memory location
in the communication memory owned4 by the triggering node. The interrupt hard
ware recognizes the port on which the interrupt occurred and the software can locate
the corresponding node number and communication memory, from which the sup
plied word can be read.

The interrupt word consists of two parts. The first part is 8 bit wide and represents
the interrupt type, the second part, the data-part, is 24 bit wide and is free for other
use. The interpretation of the type depends on the data-part.

An interface is provided by the interrupt module, so that it can be used by other
kernel modules5. A module has to reserve interrupt types as needed and register a
callback function for every reserved type. Some types are already reserved by the
interrupt module itself. They are used e. g. for establishing an initial connection or
for state information important for other nodes. For a kernel module the reserved
types must be system-wide identical. A single interrupt-send routine is provided to
initiate an interrupt. Parameters of this function are the destination node number,
the interrupt type, the data-part and a time-out value. With this time-out value one
can switch between time-out mode, blocking and non-blocking mode.

In case of an interrupt the interrupt mechanism reads the supplied interrupt word,
extracts the type and then calls the registered callback function with the senders
node number, the interrupt type and the data-part as parameters.

Certain enhancements have been implemented to increase the robustness of the
interrupt mechanism. The interrupt mechanism automatically tries to establish con
nections to all immediate neighbours which are accessible. It monitors these con
nections and reports changes in status to the kernel modules by using the callback
functions. By using a FIFO queue, the interrupt mechanism is able to smooth short
peaks in the interrupt frequency.

Message.Passing Mechanism. The message-passing mechanism was implement
ed as one of those kernel modules using the interrupt mechanism.

A message consists of the message header and the message body, which can hold
six words (24 bytes). For the messages a static buffer pool is allocated in the com
munication memory modules which the node owns. A special buffer management
was implemented. It has the responsibility of keeping track of each buffer sent. This
is very important for maintaining consistency of the buffer pool.

The interface of the message-passing module is constructed in the same way as
the interface of the interrupt module. One has to reserve message types and register
a callback function for each type reserved. To actually send a message a single mes
sage-send function is provided.

4. To provide a uniform structure of the communication memory, the physical mem
ory may be divided into logical parts, which may be assigned to different nodes.

5. We call each of our implemented kernel extensions a module.

www.manaraa.com

28

If the message-send routine is called, the message-passing mechanism allocates
a buffer for the message, fills in the message header and copies the message body.
Some processor nodes may have more than one logical communication memory, so
the buffer is allocated in that memory module which the receiver or the routing node
has access to. The message-passing mechanism then calls the interrupt-send func
tion with parameters destination node, type and index of the allocated message buff
er.

Message buffers sent to an immediate neighbour are not sent back immediately,
but are gathered by the receiver. This is done to reduce the interrupt rate. There are
three events in which accumulated buffers are sent back:

• A certain amount is exceeded. The limit is a tunable parameter.
• A message is sent in the opposite direction. The accumulated buffers belonging

to the receiver are simply added to the message.
• A neighbour requests the return of the used buffers.

A simple protocol guarantees that a message is received by the destination node.
Additional protocols assure that a received message is accepted by the destination
kernel module.

Shared-Memory Mechanism. Another communication mechanism, beside the
message-passing mechanism, is the shared-memory mechanism. In the following
section we introduce our implementation of this mechanism.

The shared-memory mechanism consists of two parts. These are the communica
tion memory manager which provides the linkage to the physical shared-memory
and, as main part, the shared-memory manager. The shared-memory manager imple
ments the necessary protocols to maintain the consistency of allocated
shared-memory segments. It also supplies a simple interface useable by other kernel
modules.

Communication Memory Manager. To allocate or free pages6 from the communi
cation memory, the shared-memory mechanism uses calls to the communication
memory manager. The pages available for shared-memory are numbered consecu
tively and linked by using a table containing one entry for each page. The entries
determine the number of the following page, which need not be the one physically
following. What distinguishes this memory manager from others is the lack of au
tomatic memory mapping or unmapping. Therefore a call to the allocate function
does not return the start address of the allocated memory, but a pointer to a table
containing the page numbers. The information about the pages is essential, because
the address space mapping may not be the same on all nodes. All tables are situated
in the communication memory itself so that they are accessible by
immediate-neighbour nodes. Additional calls exist for calculating addresses out of
page numbers and for mapping and unmapping the allocated memory into and out
of the kernel address space.

6. The hardware only supports pages of 4K byte granularity.

www.manaraa.com

29

Shared-Memory Manager. The shared-memory manager provides the functional
ity used for communicating with immediate neighbours and keeps track of allocated
pages to allow their re-integration in case of faults on neighbouring nodes. On allo
cation of a shared-memory segment, the memory manager validates provided pa
rameters and chooses that communication memory which the destination node has
access to. If an immediate neighbour wants to share an allocated memory segment,
the memory manager provides upon request the offset to the corresponding page ta
ble. For the inter-node communication the message-passing mechanism is used. On
the destination node the shared-memory manager is able to locate the page table and
to map the shared segment into the kernel address space.

On top of the shared-memory manager a system-call interface (as described in
[6]) is established. This interface allows an efficient use of the shared-memory
mechanism by the application programmer.

In MEMSOS we want to examine certain aspects of different communication mech
anisms. In section "Message-Passing Mechanism" the basic message-passing mech
anism was introduced. This mechanism was built on top of the interrupt mechanism
described above. In this section we have described the shared-memory mechanism.
In this shared-memory mechanism we use the message-passing mechanism as the
basis for communication. This was done because the amount of communication
needed and the time used for it is fairly small in comparison with the data trans
ferred and the time needed for reading and writing the data.

6 Conclusions

In this paper the MEMSY project was introduced. MEMSY belongs to the class of
the shared-memory multiprocessors. Viewed from the hardware level massive par
allel systems with global shared-memory have not been realizable up to now. A
compromise has to be made between an efficient system on one side and a general
purpose system on the other side.

MEMSY offers tightly coupled processor nodes arranged in a hierarchy of grids.
The sharing of memory is only between nearest-neighbour nodes. It was shown that
with the additional hardware, called coupling units, it is possible to reduce the
amount of necessary connections without too much loss in efficiency. Because of
the constant complexity of inter-connections and the modular concept the system is
easily scalable.

An easy to use programming model which offers even a great variety of para
digms used in the programming models of other high-performance multiprocessor
systems was introduced. Because of this programming model many existing user
programs are easily portable to our system. Currently some programs are ported to
the MEMSY system. By examining these programs we hope to gain more informa
tion about the system performance and be able to take valid measurements.

Our application concept was introduced. It offers a way to supervise distributed
user programs. It is the basis for further work to be done in the area of user support
and load balancing.

www.manaraa.com

30

Because MEMSY is an experimental multiprocessor system it was tried to imple
ment as many communication mechanisms as possible. An important aspect in do
ing this was to be able to compare their usefulness and performance and therefore
be able to validate our multiprocessor concept.

References

1. M. Dal Cin et aI., "Fault Tolerance in Memory Coupled Multiprocessors"; in
this volume

2. G. Fritsch et aI., "Distributed Shared-Memory Architecture MEMSY for High
Performance Parallel Computations"; Computer Architecture News, Vol. 17,
No.6, Dec. 1989, pp. 22 - 35

3. W. Handler, F. Hofmann, H.-J. Schneider, "A General Purpose Array with a
Broad Spectrum of Applications"; Computer Architecture, Informatik
Fachberichte, Springer Verlag, No.4, 1976. pp. 311-335

4. U. Hildebrand, Konzeption, Bewertung und Realisierung einer dynamischen
Netzwerkkomponente ftir speichergekoppe/te Multiprozessoren, Dissertation,
Arbeitsberichte des IMMD, Univ. Erlangen-Niirnberg, Band 25, No.5, 1992

5. R. Hofmann, "The Distributed Hardware Monitor ZM4 and its Interface to
MEMSY"; in this volume

6. Kardel, W. Stukenbrock, T. Thiel, S. Turowski, Anleitung zur Benutzung des
MEMSY-Programmiermode[[s jur Anwender; interner Bericht, IMMD 4, Univ.
Erlangen-Niimberg, Oktober 1991

7. Karl J. Rusnock, Multiprocessor SYSTEM VI88 Release 3 Design Specification;
Motorola, Confidential Proprietary, May 1989

8. K. Rusnock. P. Raynoha, "Adapting the Unix operating system to run on a
tightly coupled multiprocessor system"; VMEbus Systems, Oct. 1990, Vol. 6,
No.5, pp. 8-28

9. K. Rusnock, The Multiprocessor M88000 RISC Product; Motorola
Microcomputer Division, Tempe, AZ 85282, 1991

www.manaraa.com

Fault Tolerance
in Distributed Shared Memory Multiprocessors

Abstract

M. Dal Cin, A. Grygier, H. Hessenauer, U. Hildebrand,
J. HOnig, W. Hohl, E. Michel, A. Patariczal

Informatik III
Universitlit Erlangen-Niimberg

Massively parallel systems represent a new challenge for fault tolerance. The designers of
such systems cannot expect that no parts of the system will fail. With the significant increase in
the complexity and number of components the chance of a single or multiple failure is no longer
negligible. It is clear that the redundancy, reconfigurability and diagnosis techniques must be in
corporated at the design stage itself and not as a subsequent add-on. In this paper we discuss the
fault tolerance techniques developed for MEMSY, a massively parallel architecture. These tech
niques can, in principle, be easily transferred to other distributed shared memory multiprocessors.

1 Introduction: Fault Tolerance and Parallel Computers

Fault tolerance is the ability of a system to tolerate the presence of a bounded num
ber of faults (and the resulting errors) and to continue in operation until scheduled main
tenance can take place. It is achieved either by fault masking or by fault handling in such
a way that the application service is not threatened and the faults do not become visible
to the user. Fault tolerance is a critical design parameter especially for massively paral
lel computers. There are at least three reasons:

First, if the system contains several thousands of processing nodes, the probability
of node failures cannot be neglected, regardless of which technology is used.

Second, applications that run on massively parallel computers require long execu
tion times. For example, to attack the "Grand Challenges" [5] weeks or even months are
needed. Therefore, a massively parallel computer must provide long uninterrupted com
putation times and reliable access to a large amount of data.

Finally, massively parallel computers should be scalable. A scalable computer is
one whose power in every performance dimension grows transparently as processing
nodes are added. Adding more and more components beyond a certain number, howev
er, can dramatically decrease reliability and hence, system performance. To overcome
this scalability limit, fault tolerance measures are necessary.

Fault tolerance requires redundancy in hardware, software or time. It is obvious that
for massively parallel computers hardware redundancy has to be employed as sparingly
as possible. Fault handling is, therefore, more adequate and more cost-effective than
providing fault-masking hardware redundancy. This holds true particularly for very
small failure rates. Fault handling includes error detection, error location, and fault con-

I. Guest researcher from TU Budapest. Dept. Measurement and Instrumentation Engineering

www.manaraa.com

32

finement. It also includes damage assessment as well as error recovery and fault treat
ment in conjunction with continued service to the user. These techniques must be
implemented in a manner that does not severely affect performance and scalability. Yet,
high error coverage and low error latency have to be achieved.

These requirements pose strong demands on the implemented fault detection mech
anisms. They imply that each processing node of a massively parallel computer has the
capability to check itself concurrently with program execution. Testing and test man
agement are too time consuming. Moreover, the majority of faults in a computer is tran
sient [18] and cannot be detected with high enough probability by (off-line) testing.
Although software techniques can be used for error detection, they are, however, likely
to have high error latency. Therefore, hardware solutions are preferred.

It would be ideal if fault tolerance for massively parallel computers could be based
on fail-silent processing nodes. A fail-silent component must be self-checking and fail
safe. It either operates correctly, or does not produce any output. Also it allows to de
termine whether or not it is fault-free without having to rely on time-outs. Such a com
ponent is said to suffer crash failure semantics [3]. To construct a fault-tolerant system
out of fail-silent components is relatively easy.

It is obvious that an ideal fail-silent processing node cannot be built economically.
The implementation must, therefore, be based on a realistic fault model and an analysis
of its error coverage. Near fail-silence can be achieved, for example, by self-checking
logic, by a master-checker node configuration or by watchdog coprocessors.

As soon as an error is detected, it must be handled. If roll-back is part of the error
handling mechanism, each processing node must periodically checkpoint its state in a
memory with stable storage property [11]. The stable storage property is necessary to
prevent the faulty node from corrupting its state information, and to protect this infor
mation against latent memory errors. (Such errors can be detected by the stable storage
by memory scrubbing.) With checkpointing, a processing node is enabled to resume a
failed computation by reading the relevant state information in the case of a temporary
fault. Checkpointing also enables a functioning node to resume computation of a failed
node in case of a permanent fault (reconfiguration). Yet, in massively parallel systems
there is no global memory. Hence, checkpoints are to be stored distributed in such a way
that a consistent global checkpoint can be maintained, even if some nodes or commu
nication links become faulty.

In a massively parallel system the communication subsystem can also fail. Its fault
tolerance requires redundant communication links and a robust communication proto
col which should always allow correctly functioning processing nodes to communicate
correctly in bounded time. To ensure uncorrupted data exchange, standard techniques
employing checksums and retransmissions can be used.

on:
In summary, fault tolerance for massively parallel systems should ideally be based

Fail-silent processing nodes employing concurrent error detection with high
error coverage and low error latency
Fault-tolerant interconnection networks with provisions for detecting and tol-

www.manaraa.com

33

erating link and switch errors
Stable checkpoint memories allowing memory scrubbing to detect latent er
rors
Efficient error handling mechanisms (rollback and reconfiguration)

In the following an approach to implement these features into the experimental
fault-tolerant version of the multiprocessor system MEMSY [7] is described.

2 Hardware Error Detection

The primary goal in designing error detection mechanisms is high fault coverage,
while keeping redundancy on a moderate level. This can be achieved by combining
built-in standard mechanisms on chip level with efficient hardware fault detection
mechanisms on system level.

For economic reasons, the large hardware overhead resulting from multiple modu
lar redundancy for the whole system is not feasible. Accordingly, modular redundancy
has to be restricted to the most crucial hardware resources, such as the CPU. Duplica
tion within the computing nodes can be based on master-checker mode or on the use of
a watchdog processor to monitor concurrently the program execution of the main pro
cessor.

2.1 Master-Checker Mode

The master-checker (MC) mode is based on the duplication of the processors. Both
processors run the same program clock-synchronously and process the same data
stream. In the Motorola M88k microprocessor family, MC-mode can be set up practi
cally without external components, as the necessary logic is integrated onto the chip it
self. An internal comparator is assigned to each bus pin, which compares internal and
external values at the output pins. Only one processor (the master) outputs data. The
output bus drivers of the other processor (the checker) are disabled. Accordingly, during
data transfer the comparators on the checker pins compare the internal signals and those
driven by the master. In the case of mismatch an error is signalled.

The M88k family allows setting up of the MC-mode either at the chip level (i.e. by
duplicating a CPU chip and setting up the MC-mode separately on the instruction and
data buses), or at the processor level (Le. by setting up the MC-mode on the system bus).

The latter mode is implemented in an experimental version of the MEMSY node by
use of the Motorola MVME 188 board system comprising two identical MC88100 pro
cessors. Both processors can either be used independently or jointly with reduced per
formance as MC-system. In MC-mode the corresponding pins of both integrated
circuits (CPU and/or MMU chips) are interconnected by means of an add-on board.

Error coverage and latency

Duplication ensures full coverage of transient and permanent faults in a single unit
of a MC-pair, but it does not detect errors affecting both units, e.g an error in the instruc
tion or data stream. Moreover, it does not detect errors in the memory or peripherals.

www.manaraa.com

34

Therefore, the memory modules ofMEMSY and the bus have parity protection. Hence,
error detection of the computing core covers most single faults.

In addition to fault coverage, short error latency is a primary objective as well. A
long error latency may result not only in a significant loss of computing time, but can
also cause serious difficulties in fault diagnosis, since long fault propagation chains
weaken the correlation between a fault and the resulting operational errors.

In MC-mode, only the data transfer on the bus can be observed and, accordingly,
data in the CPU and in the cache remain unchecked until they are written back to the
main memory. The Motorola MC88200 MMU chip supports three different memory
update policies:

Cache inhibit: Only direct data transfer with the main memory.
Write through: New values of data are immediately written back into both the
main memory and cache. Read operations access the data in the cache
Copy back: Both read and write operations access the data in the cache. Mod
ified data is written back only at the end of the computation or at the occur
rence of a cache miss.

For the most frequently used (and probably most important) data copyback to the
main memory can be delayed until the very end of the computation. Therefore, with
copy back the error latency can, in the worst case, approach the full computing time! In
Table 1 the fault coverage of the MC-based checks of different bus transactions are sum
marized for different memory update policies.

Checks of read Checks of write

Cache Cache policy operations operations

Address Data Address Data

Inhibit Yes
Yes Yes

Data Write through
No

Copy back No No No

Inhibit Yes
Code Not applicable

Enabled No

Table 1 Fault coverage of Me-based checks

For the instruction fetch only read operations are performed. Hence, there are only
two alternative cache policies: cache enabled and cache inhibited. Only if the cache is
inhibited, the MC-setup performs checks on the instruction flow with low latency. How
ever, inhibiting the cache may reduce performance drastically.

www.manaraa.com

35

The most important limitation of the error detecting capabilities of the MC-mode
results from the only partial duplication, i.e. the system remains still unprotected against
faults in common resources located in the "outside world" of the processing core.
Hence, in addition to the MC-mode of the CPU an error detection mechanism is re
quired, which checks the instruction flow and guarantees at least a moderate fault cov
erage for the whole system.

2.2 Watchdog Processors for Control Flow Checking

A watchdog processor (WDP) is a relatively simple coprocessor which concurrently
monitors the correctness of program execution. A WOP compares reference signatures
with run-time signatures. They encode the specified and the real program flow, respec
tively. At program start the reference signatures are transferred to the WDP. The run
time signatures are generated by the WDP while the program is running on the main
processor (MP).

Control flow checking can be divided into derived and assigned signature based
methods, depending on the run-time signature generation method used [14]. First con
sider derived signature based control flow checking. The WDP compresses the instruc
tion code stream executed by the MP into run-time signatures. Then it compares these
signatures with the reference signatures. Unfortunately, this method requires full obser
vability of the instruction stream. In the case of on-chip caches or on-chip instruction
prefetch queues (IPQ) similar problems arise as discussed in Sec. 2.1. To solve these
problems the WDP has to be embedded in the processor core [12]. In case of a IPQ, the
WPD has to emulate the processor pipeline.

In an assigned signature based method, the MP explicitly sends compilation time
generated signatures to the WDP uniquely identifying its current state in the program
execution. This method is, therefore, independent of the processor architecture.

Extended signature integrity check

The assigned signature based method developed for MEMSY is called extended
signature integrity check (ESIC). It is an extension of the signature integrity checking
(SIC) method described in [13]. As in the original SIC method a preprocessor extracts
the so-called control flow graph from the high level programming language source code
[8], [15]. In this graph nodes represent branch-free program blocks (instruction se
quences) and arcs correspond to control transfers (e.g. branch-type instructions as if
then-else or case statements). To each program node an unambiguous label (signature)
is assigned. The graph is translated into a WDP program, reflecting the control structure
of the main program. At all branches of the main program signature transfer statements
are inserted into the source code in order to transfer node labels to the WDP during main
program execution. These signatures identify the current main program location. Simi
larly, in the WDP program receive_signature statements are inserted at the correspond
ing positions. Both programs are compiled into machine codes of the target and
watchdog processor, respectively.

The MP and the WDP are started simultaneously and then they execute the main and

www.manaraa.com

36

the watchdog programs, respectively. The WOP monitors concurrently the correct exe
cution order of the main program blocks by checking the received actual signature se
quence. A sequence of signatures is accepted as correct, if it corresponds to an existing
path in the program graph. In case of a conditional branch instruction, it is only checked,
whether the target instruction belongs to the set of admissible target instructions.

In the original SIC method the WOP program is generated by eliminating all non
control statements from the main program; e.g. if the main program contains a subrou
tine call, then a similar call will be executed by the WOP, but no WDP code corresponds
to arithmetic statements.

We implemented the WOP as a finite deterministic push-down automaton. For this
automaton a preprocessor extracts the program graph in a tabular form which defines
for each current signature (state) the set of the allowed subsequent signatures.

In order to overcome problems related to subroutines, the preprocessor generates a
separate control flow graph for each subroutine and, accordingly, a separate automaton
table. The start and the end node of every subroutine are labelled by special signatures,
viz. "start of subroutine" (SOP) and "end of subroutine" (EOP), respectively. This sig
natures contain a field uniquely identifying the subroutine.

If a SOP-signature belonging to an existing subroutine entry point is received, the
current state is pushed onto the WDP private stack and the new state of the WOP is the
initial state (start node) of the subroutine, i.e. the WDP switches over to the automaton
table of the subroutine. If the WOP receives an EOP-signature it checks, whether the
signature belongs to the current subroutine, and if so its next state is popped from the
private stack, i.e. the WDP resumes checking the calling program.

Contrary to the SIC method the WDP works as an interpreter of signature streams.
Therefore, it is necessary to detect the absence of run-time signatures e.g. when the MP
stopped due to a fatal system crash. The absence of a signature is detected by time-out.
If subroutines are called which do not send signatures (e.g. library calls of the program
ming environment), the MP can switch off this time-out mechanism by sending a spe
cial signature to the WOP (and can switch it on again the same way).

The most important classes of errors which remain undetected by the WDP are:
Errors which are not manifested as control flow distortions, e.g. errors chang
ing the value of variables
Branch selection errors in the case of control transfer instructions, if the faulty
successor node is syntactically allowed by the program graph
Short time transients, which occur between two consecutive signatures, but
leave the signature stream intact
Wrong subroutine calls

Errors of the first three types are resistant to any high level control flow check based
error detection mechanism. The fourth group results from the new subroutine handling
method in ESIC, as a SOP-signature is an allowed successor for each state of the pro
gram graph. However, by putting restrictions on the set of the allowed successors this
limitation can be reduced considerably.

www.manaraa.com

37

WDP hardware and measurement results

To demonstrate the usefulness of ESIC for MEMSY a WDP prototype was built
based on a T800-25 MHz transputer. The WDP is connected to the system bus by a
FIFO memory. It is used for downloading WDP programs and for the signature transfer.
The main advantage of the FIFO is, that the signature transfer to the WDP is reduced to
a single, constant addressed memory access. To avoid signature stream overflow, the
MP can be stopped temporarily by an interrupt generated by a FIFO-full condition. The
links of the transputer may form a communication network for the exchange of diag
nostic information between the WDPs of different MEMSY processing nodes.

We measured the time overhead for sending and interpreting a signature by simula
tion on the multiprocessor system Sequent Symmetry with 16 processors and directly
on a memory coupled multi-transputer system [15]. The computation times of iterative
multigrid solvers of the 2-D Poisson equation and of the 2-D Navier-Stokes equation on
the multi-transputer system are shown in Table 3. Also shown is the number of signa
tures generated and the number of conflicts. A conflict occurs if the buffer is full and
the application has to wait until the WDP processor has read a signature out of the FIFO
memory.

The time required for sending one signature varies from 1.7 to 4.0 microseconds.
This results from the large number of conflicts particularly in the case of the Poisson
equation. The time needed by the WDP to check one signature is 10 microseconds. In
the case of the Navier-Stokes equation the average time between two send_signature
statements is longer than the time to check a signature. Hence, the time overhead for the
control flow check is very small (4%).

Signatures TeNC TeC Ts Conflicts Overhead
[sec] [sec] [Jlsec]

Poisson 5504 000 54.5 76.8 4.0 235564 40%

Navier-St. 3092000 138.4 143.7 1.7 28 4%

TeNC = computatJon tlffie WIthOut check
TeC = computation time with check
Ts = average time for sending a signature

Table 2 Measurement results

2.3 Simultaneous use of master-checker mode and watchdog processors

As described before, the MC-mode assures high fault coverage for the computing
core, but leaves the system unprotected against faults in other parts. A WDP provides a
moderate protection against faults in the overall system resulting in control flow errors,
but can not detect pure data errors and data related control flow errors such as the selec
tion of a wrong branch in an if-then-else statement.

If both methods are applied simultaneously, the signatures are sent by the main pro
cessors to the WDP and are checked by the checker. Therefore, even data related control

www.manaraa.com

38

flow errors can be detected, if they originate from faults in the computing core. The
main results of the simultaneous use of the MC-mode and the watchdog processor are
summarized in Table 3. Shaded parts denote the method dominating the fault coverage.

Fault coverage in %

Fault location Master-

control - 80
CPU-internal

data 0

Code cache

control
Data cache

data

control
Exremal components 0

data 0 0

Table 3 Fault coverage

As it is shown in this table, the only important uncovered errors are external data
errors. However, such errors can easily be detected if the main memory is protected by
a proper error-detecting code.

3 Fault Tolerant Interconnection Network and Stable Storage

3.1 Fault Tolerance Aspects of the Network Unit

The network (or coupling) unit used as a building block of the MEMSY intercon
nection network (cf. [6], [7]) provides mechanisms at hardware level which support the
efficient use of alternative communication paths in case of faults. The basis for this fault
tolerance feature is the ring structure of the internal subpaths. Alternative communica
tion paths consist of disjoint sets of internal subpaths. Hence, the permanent failure of
one internal subpath within a network unit can be tolerared. The result will be a reduced
bandwidth but full interconnection is guaranteed (graceful degradation).

The failure of a single internal subpath is always tolerated. A simple example dem
onstrates the reaction to a faulty memory access. Consider the following scenario (cf.
Fig. 1):
Processing node Pi is faultfree and performs an access to the communication memory
CMj . Pi observes the memory access as faulty. (For error detection, parity checking is
used.) To mask a temporary fault the memory access is repeated. If the error still occurs
the fault may reside either within the communication memory or within the intercon
nection network.

www.manaraa.com

eM.
J

39

P.
1

1 2

Fig. 1 Alternative communication paths from Pi to CMj within the network unit

At this point it is not possible to decide which one has lead to the faulty memory
access. To locate the fault the communication memory is accessed via different commu
nication paths and the results are compared, Fig. 1.

At hardware level this possibility to localize faults is supported as follows. Each
communication memory which is directly accessible by a processor is mapped into the
processor's address space (Fig. 2) such that accesses to communication memory CMj
can be performed within the address subspaces ASjd, ASj1 or ASj2• The same offset ad
dress within any of these address subspaces will select the same memory cell but a dif
ferent communication path within the network unit:

ASjd: dynamic selection of the communication path according to the
current switch settings

ASj1 : communication path 1
ASj2: communication path 2.

As long as no fault has been detected, dynamic selection of the communication path
is used. This provides higher efficiency by avoiding conflicts within the network unit.

address subspace

CMj+l (dynamic)

CMj (fixed 2)

CMj (fixed 1)

CMj (dynamic)

CMj _1 (fixed 2)

Fig. 2 Multiple mapping of communication memories

www.manaraa.com

40

In case of a fault, all accesses to communication memories must be carried out either
within ASj1 or ASj2• Which of these two address subspaces is selected is determined
individually for every processing node.

Let us now consider stuck-at faults. A stuck-at fault of one switching element within
the network unit may result in one of three situations depending on the static switch set
ting (Fig. 3):

The switch is inactive: The p-port and the m-port are isolated (Fig. 3a)
The switch connects the p-port with the m-port (Fig. 3b)
The switch connects the p-port and the m-port with different internal subpaths
(Fig. 3c, Fig. 3d)

a b c d

Fig. 3 Stuck-at faults of a single switching element of the network unit

Thus, a switch is either intact, inactive or stuck-at. The inactive state is equivalent
to link failures. If switch Si is inactive then processor Pi can still access its communica
tion memory Mi by using its second port and a different network unit (cf. [7]). Many
single stuck-at faults can be tolerated within the network unit itself, Fig. 4 demonstrates
this. Fig. 4a is the desired access pattern; Fig. 4b and Fig. 4c show how the stuck-at
faults of switch So are masked by the network unit. An analysis of the fault tolerance
capacity of the interconnection network of MEMSY is given in [6].

a b c

Fig. 4 Masked stuck-at faults

www.manaraa.com

41

3.2 Stable Storage for System Data and Checkpoints

For storing checkpoints a very reliable memory is necessary: viz. a 'stable storage'
[1], [11]. It must have some special properties:

Persistency:
Information stored in the stable storage must not be changed by faults. If a fault
occurs it must be corrected within the stable storage.
Autonomy:
Processors that are connected to the stable storage have no direct access to
stored data. They act as clients. Only the control of the stable storage can ma
nipulate the stored data. Thus, it is guaranteed that a faulty processor cannot
destroy information in the stable storage.
Information hiding:
The data units in the stable storage are "stable objects". The clients only know
name (a reference) and size of the objects.
Atomic update for stable objects:
Any update operation must be done for complete stable objects. If it fails, the
stable object must be set back to its previous state.
Fault tolerant control for the stable storage:
The control of the stable storage must be able to recognize its own defects at
once and to react in the correct manner, such that no data can be destroyed in
the stable storage. Furthermore all stable objects must still be protected and ac
cessible (readable) in spite of such a defect.

Establishing a checkpoint implies a certain expense: memory space and time. (The
required memory space depends on the user's program. In general some megabytes per
processing node are needed. The time for establishing a checkpoint is in the range of
seconds per processing node.) With global checkpointing all processors will establish
their checkpoints at about the same time. Hence, for a large multiprocessor system only
distributed checkpointing is feasible, so that all processors can establish their check
points concurrently. Therefore, it would be best to attach a stable storage to each pro
cessing node.

If a processing node becomes faulty its data in the stable storage must be accessible
to other processing nodes. MEMSY offers a nearest neighborhood connection between
processing nodes. So the stable storage can be placed where the communication mem
ory is.

However, the properties required for the stable storage lead to an expense in hard
ware that is much higher than that of a communication memory. In MEMSY not all pro
cessing nodes will be equipped with a stable storage. Each elementary pyramid (4+1
processing nodes) will contain one or two stable storage units that are installed in par
allel to a communication memory module (Fig. 5). Within an elementary pyramid there
is a full connection between the nodes. Therefore, all processing nodes have direct ac
cess to one stable storage at least.

The stable storage unit consists of a control unit and two large memory modules for
stable objects. From outside the stable storage appears like a coprocessor which can be

www.manaraa.com

42

Interconnection Network ofMEMSY

Fig. 5 Structure of the stable storage unit

addressed via a memory interface. The processing nodes communicate with the stable
storage via command and parameter registers. The status of their command is returned
in a result register.

The commands are:
install or delete a stable object
execute a read or a write operation on a stable object
check the stable objects and correct faults if necessary
return information about the state of the stable storage.

There is a buffer for exchanging data between the processing nodes and the stable
storage. Processors put data blocks into it when they command a write operation. With
a read operation the stable storage puts a copy of the stable object into the buffer and
informs the processor via the result register.

Protection of stable objects against illegal access is very important. Therefore. the
processors must run a protection protocol. Only if it passed correctly. the stable storage
executes the command. Otherwise the command will be rejected. In this way the stable
storage checks the correct operation of a processor. As part of the protocol. the proces
sor must attach its password to each command. The processor must ask for the password
before it uses the stable storage the first time.

For error detection in the data transfer between a processing node and the stable
storage parity bits (4 bits for a 32-bit word) are used. Furthermore. for each data block
a checksum is generated. transferred and checked. The stable storage will execute the
command only if no error is detected.

A critical situation arises when the stable storage executes an update of a stable ob
ject Therefore. all stable objects are stored twice (in two different memory modules).
This makes it possible to correct errors during updates of an object by copying a con
sistent state from the other not affected module.

www.manaraa.com

43

The control of the stable storage has to detect its own faults immediately and to op
erate in spite of faults. Therefore, the control unit will be implemented as TMR unit
(Triple Modular Redundancy). Thus an error of a single module is detected at once and
masked. Connected processing nodes are informed, so that they can react appropriately.
For example, they can transfer their stable objects to another stable storage.

The stable storage needs information (control blocks) for administration purposes.
Within the stable storage all stored information (checkpoints and administration data)
is protected by ECC (Error Correcting Code). For protection the control blocks are
treated as stable objects, too.

4 Fault Treatment by Rollback Recovery

The rollback-recovery scheme for memory-coupled mUltiprocessors as proposed
for MEMSY is based on the notion of distributed snapshots [2], [10]. The state of an
application program is defined by the state of every participating process plus the state
of shared memory segments. Other approaches, such as conversations [16], [17] or mes
sage logging schemes [9] are not considered suitable, the latter because logging is im
possible, as shared-memory communication does not necessarily involve a message
passing programming model.

Furthermore, we consider numerical applications as the primary use for memory
coupled multiprocessors [7]. These applications are characterized by high communica
tion loads. Most numerical applications are basically iteration loops, offering suitable
spots for global checkpointing. Thus, to optimize checkpointing, we assume the pro
grammer specifies the type of data to be stored and the exact places within the execution
of a program, when checkpoints shall be taken. A fully transparent scheme would cost
much more coordination overhead.

Our primary goal of an implementation of the rollback-recovery mechanism is
achieving as high an efficiency as possible, that is, we want the mean runtime of a job
on a fault-ridden, fault-tolerant system (T FF) to be about as long as the runtime of the
same job on a fault-free system with no fault tolerance mechanisms (To). The efficiency
can be defined as:

Our second goal is a high trustworthiness of the results of a long-running computa
tion. The means to reach this goal are provided by the error detection mechanisms de
scribed earlier in this paper. We expect 99% of all faults to be detected.

To reach the goal of high efficiency two mechanisms are employed:
two-level checkpointing scheme with 'hard' and 'soft' checkpoints
hardware-assisted, non-blocking coordination of global checkpointing

The two-level checkpointing scheme is based on the assumption, that there are dif
ferent media for storing checkpoints available: fast, unreliable storage and comparative
ly slow, stable storage. Fast storage can be the local memory (main and background

www.manaraa.com

44

storage) of a processing node, while stable storage can be replicated filesystems on a
remote server or stable RAM (see section 3.2). Error recovery from the local, unreliable
checkpoint storage, would not always succeed, but may fail with a certain probability,
whereas recovery from stable storage is supposed to succeed always.

Another aspect of numerical applications is the large size of data structures. We
therefore assume, that checkpoints occupy a considerable amount of space in the stor
age medium, imposing an upper limit on the number of checkpoints kept in storage.
Thus, global coordination is necessary, to determine at which times checkpoints are ob
soleted and may be discarded.

Global checkpointing requires all processes of an application to record their state
atomically, even if errors during checkpointing occur. A decentralized two-phase com
mit protocol is employed to ensure a new checkpoint has been taken before outdated
checkpoints are discarded. As decentralized two-phase commit protocols require effi
cient broadcast algorithms, special support hardware reducing the number of broadcasts
is presently under development.

4.1 Fault Classes

We divide faults into two classes: 'soft' faults and 'hard' faults. Soft faults allow
global recovery from state information kept locally, while hard faults require rollback
to checkpoints from stable storage. Hard faults would include hardware failures and
node crashes, as node crashes cause the loss of local memory data. The two-level check
pointing scheme is based on the assumption that most errors fall into the soft category.
This assumption is based on several observations.

First, once detected, hardware errors cause exceptions, caught by the operating sys
tem of a node. The operating system then determines the cause of the exception. If the
exception occurred in user mode, the application program is signalled, otherwise, in
most cases, the node will crash. Yet it is safe to assume that the amount of resources,
such as cpu time, spent on the execution of the operating system in kernel mode is far
less than the amount spent on the execution of the application. Most transient hardware
errors, therefore, will fall into the soft category.

Permanent faults, such as node failures. fall into the category of hard errors. Recon
figuration and subsequent recovery is not possible from the local checkpoints, as the
state information in local storage of the defective node cannot be accessed from other
nodes. Studies in [18] show the frequency of permanent hardware errors about ten times
less than the frequency of transient errors. Even though operating system software er
rors and their manifestation are an unknown quantity, but it is safe to expect that at least
75% of all errors are soft errors.

4.2 Two-level Rollback Scheme

There are several advantages to a two-level rollback algorithm. First, soft check
points are created comparatively quickly. because of the use of fast storage media. Be
sides soft checkpoints can be written in a 'careless' fashion. as there is no need to
guarantee sure recovery. Fast checkpointing reduces the length of the optimal check-

www.manaraa.com

45

pointing interval, thus reducing the loss of job progress in case of errors. Shorter inter
vals also reduce the probability of the decay of checkpoint data, as checkpoints are kept
for a shorter time. As recovery with a soft checkpoint may fail, efficiency is reduced re
sulting in increased job runtime.

As a remedy, hard checkpoints are created. In case of successful 'soft' rollback the
soft checkpoint has been proven to be intact, thus, whenever rollback to a soft check
point succeeds, this checkpoint is made a hard checkpoint, by moving it to stable stor
age. As 'hard' rollback is considered to be always successful, even for very long job
runtimes the efficiency drops asymptotically to a comparatively high value. On the oth
er hand, hard checkpoints are saved seldom, one hard checkpoint per mean-time-to-fail
ore (MTIF) on average. Thus, the impact of slow access to stable storage on overall
runtime is kept low.

Fig. 6 shows the efficiency of different checkpointing schemes, versus the runtime
of a job, expressed in multiples of a system's MTTF. The efficiency is defined as above.
Value' I' denotes the efficiency of a fault-free no fault-tolerance system. The first curve
('no fault-tolerance') should better be labelled as 'almost no fault tolerance', as some
means of fault detection are employed: The job is rerun, until the same result has been
computed at least twice. The second example, denoted as 'restart' examines the case in
which errors are detected (at no time cost) and where, in case of an error, the job is re
started from the beginning. The third example ('soft checkpointing only') shows the ef
ficiency of a checkpointing algorithm, where soft checkpoints are taken and rollback to
a soft checkpoint succeeds with a probability Ps=7/8. Finally, the last example ('hard &
soft checkpoints') shows the efficiency of the proposed checkpointing scheme.

Efficiency
1

.5

2 4 6

Simulation results (Ps=7/8)

V=90%

.,' •• ' hard & soft check oints

8 10 12 14 16

Runtime To / MTTF

Fig. 6 Efficiency of several checkpointing schemes

We define the trustworthiness of a computation result as the probability that no error
during the job runtime has gone undetected. The dotted line shows the boundary, after
which this probability falls below the 90% mark, assuming a coverage of 99%. The
trustworthiness of a job with a runtime equal to 8 times the MTTF is higher than 90%
if hard and soft checkpointing is employed, and less than 90% if only soft checkpointing

www.manaraa.com

46

is used. Interesting consequences are that any long-running computation requires a cov
erage of error detection mechanisms significantly higher than 99%, and that efficient re
covery mechanisms allow longer job runtimes. In our example the line of 90%
trustworthiness is intersected at a higher value of job runtime for mechanisms with
higher efficiency.

4.3 Parallelized Checkpoint Coordination

As progress of the application program does not depend upon the result of check
pointing, the two-phase commit protocol can run in parallel with the application, avoid
ing busy wait for coordination messages. Furthermore, global synchronisation at the
end of each checkpointing interval is avoided. Otherwise, every process would be
forced to wait for the slowest participant, thus penalizing overall job runtime, if the par
ticipants have different runtimes in each checkpoint interval.

With parallel checkpoint coordination the progress of processes is allowed to drift
apart, limited by the amount of storage assigned for checkpoints. In the minimal con
figuration at least two checkpoint buffers have to be provided. One buffer is needed for
the 'active' checkpoint. In case of faults the application rolls back to this checkpoint.
The coordination protocol guarantees, that the active checkpoint has been established
globally. A second buffer is needed for the 'tentative' checkpoint, a checkpoint which
exists locally, but about which it is not known, whether every other process reaches the
same point of progress. The tentative checkpoint might be committed eventually and
become the new active checkpoint, or it might be aborted and removed. Even with only
these two buffers different processes can be allowed to drift one checkpoint interval
apart, as Fig. 7 shows.

Pl -i c H c+1 r-"-fl~'
=»~'I r~

""""'~ P2 C c+1 t-t,~;!,~·
P3 -4 c .'''w,:,:,:,~'~&~ __ m~'"W;,:,:,''w:';':.j:i:<''

Buffer A B A

Fig. 7 Usage of two checkpoint buffers

Process P2 is the farthest ahead. P2 tries to establish checkpoint number c+2, but is
not allowed to, as buffer A is still occupied by the active checkpoint with number c. It
has to wait for P3 to establish checkpoint c+ I as well. After c+ 1 is committed and thus
made the active checkpoint, buffer A is freed and P2 is allowed to proceed.

www.manaraa.com

47

4.4 Hardware-assisted Broadcast

Two-phase commit with a decentralized communication structure requires all par
ticipants to broadcast their local state. Afterwards, every participant decides indepen
dently what to do with the tentative checkpoint, according to the information received
locally. In order to make sure that every participant reaches the same decision, the
broadcast algorithm has to be reliable and has to guarantee the same ordering of mes
sages. For MEMSY yet another path has been chosen: a special broadcast hardware,
based on an optical bus, is provided to allow simultaneous broadcasts: while every par
ticipant is sending its local state, it receives the global state at the same time. In a way
rather similar to a wired-OR network, any single participant can force the whole appli
cation program to abort a tentative checkpoint.

5 Conclusion

The fault-tolerant version of MEMSY is presently under construction. The system
is dedicated to the computation of long-running numerical applications. Thus, the pri
mary goals of designing the fault tolerance mechanisms have been to achieve an error
coverage as high as possible and a high overall efficiency of these mechanisms.

6 References

[1] Banatre, M.; Muller, G.; Rochat, B.; Sanchez, P.: Design Decisions for the FTM:
A General Purpose Fault Tolerant Machine, Proc. 21th FTCS, pp. 71-78, 1991

[2] Chandy, K. M.; Lamport, L.: Distributed Snapshots: Determining Global States
of Distributed Systems, ACM T.o.C.S., vol. 3, no. 1, pp. 63-75,1985

[3] Cristian, F.: Understanding Fault Tolerant Distributed Systems, Com. ACM vol.
34 (1991), pp. 56-78

[4] Dal Cin, M.: New Trends in Parallel and Reliable Computing: Massive Parallel
ism and Fault Tolerance. Invited paper, Proc. ~'92, 7th Symposium on Micro
computer and Microprocessor Appl., Budapest, April 1992, pp. 1-10

[5] Grand Challenges: High Performance Computing and Communications. The Fis
cal Year 1992 U.S. Research and Development Program. Report by the Commit
tee on Physical, Mathematical, and Engineering Sciences, NSF Washington 1992

[6] Hildebrand, U.: A Fault Tolerant Interconnection Network for Memory-Coupled
Multiprocessor Systems, In: Dal Cin, M.; Hohl, W.(eds.): Proc. 5th Int. Conf.
Fault Tolerant Computing Systems, Inforrnatik-Fachberichte 283, pp. 360-371,
Springer 1991

[7] Hofmann, F. et al.: MEMSY - A Modular Expandable Multiprocessor System, in
this volume

[8] Hohl, W.; Michel, E.; Pataricza, A.: Hardware Support for Error Detection in
Multiprocessor Systems - A Case Study, Proc. ~'92, 7th Symposium on Micro
computer and Microprocessor Appl., Budapest, April 1992, pp. 81-90

[9] Kai Li; Naughton, J. F.; Plank, J. S.: Checkpointing Multicomputer Applications,
Proc. 10th Symposium on Reliable Distributed Systems, pp. 2-12, 1991

www.manaraa.com

48

[10] Koo. R.; Toueg. S.: Checkpointing and Rollback-Recovery for Distributed Sys
tems. IEEE T.o.S.E .• pp. 23-31. Jan. 1987

[11] Lampson. B. W.: The Stable System. in Lampson. B. W.; Paul. M.; Siegert H. J.
(ed): Distributed Systems: Architecture and Implementation. LNCS 105. pp.
254-256. 1988

[12] Leveugle. R.; Michel. T.; Saucier. G.: Design of Microprocessors with Built-In
On-Line Test. Proc. 20th FfCS. pp. 450-456. 1990

[13] Lu. D. J.: Watchdog Processors and Structural Integrity Checking. IEEE T.o.C .•
Vol. 31. No.7. 681-685.1982

[14] Mahmood. A; McCluskey. E. J.: Concurrent Error Detection Using Watchdog
Processors - A Survey. IEEE. T.o.C .• Vol. 37. No.2. pp. 160-174. 1988

[IS] Michel. E.; Hohl. W.: Concurrent Error Detection Using Watchdog Processors in
the Multiprocessor System MEMSY. Proc. 5th Int. Conf. Fault-Tolerant Com
puting Systems. Niirnberg. Informatik Fachberichte 283. pp. 54-64. Springer.
September 1991

[16] Russell. D. L.; Tiedeman. M. J.: Multiprocess Recovery Using Conversations.
Proc. 9th FfCS. pp. 106-109, 1979

[17] Shrivastava, S.; Mancini, L.; Randell, B.: On The Duality Of Fault Tolerant Sys
tem Structures. In: J. Nehmer (ed.), Experiences With Distributed Systems. Proc.
Int. WS. Kaiserslautem 1987. pp. 10-37, Springer LNCS 309,1988

[18] Siewiorek, D. P.: Faults And Their Manifestation, Springer LNCS 448, pp. 244-
261, 1987

www.manaraa.com

Optimal Multiprogramming Control
for Parallel Computations

Eike Jessen, Wolfgang Ertel, Christian B. Suttner

Institut fiir Informatik, TU Miinchen
Arcisstr. 21, 8000 Miinchen 2

email: jessen@informatik.tu-muenchen.de

Abstract. Traditionally, jobs on parallel computers are run one at a
time, and control of parallelism so far was mainly guided by the desire
to determine the optimal number of processors for the algorithm under
consideration. Here, we want to depart from this course and consider
the goal of optimizing the performance of the overall parallel system,
assuming more than one job is available for execution. Thus the cen
tral issue of this paper is the question how the available processors of a
parallel machine should be distributed among a number of jobs. In or
der to obtain guidelines for such multiprogramming control, we use the
speedup-behaviour and the accumulated processor time of a job as its
characterization.

1 Introduction

Traditionally, parallel computing systems are run in serial mode, i.e. there is at
most one job being processed at a time, and the next job is not started before
the prior one is completed. However, similar to conventional computing systems,
there are some reasons for multiprogramming in parallel computing systems.
Economy of usage, for example, is obviously an important motivation. For this,
there are two viewpoints to consider: the system aspect based on computation
cost, and the user aspect based on computation benefit (which depends on the
relevance and the timeliness of the result). Generally, if the bottleneck resource
is not utilized completely by a single job, multiprogramming will render better
throughput at the price of higher response times. In a parallel computer, one has
to find an optimal compromise between (intra-job) parallelism and (inter-job)
degree of multiprogramming: it may be suboptimal to run the system with high
parallelism, if the job cannot use the processors efficiently, instead of running
several jobs at reduced parallelism. Therefore we aim towards guidelines for the
selection of optimal parallelism and degree of multiprogramming.

We begin with an investigation of typical speedup types and how they can
arise (Section 2). Then, we switch to defining profit of computations and re
consider how the optimal degree of multiprogramming is obtained for the serial
computation case (Sections 3 and 4). We then derive our guidelines for the paral
lel case (Section 5) and give a summary of them in Section 6. Finally, we compare
our results to related work (Section 7).

www.manaraa.com

50

2 Speedup-Characteristics

In section 5 we will see that the speedup-characteristic of the jobs has great
influence on the optimal multiprogramming strategy. Therefore we first present
and motivate an appropriate classification of speedup functions and show their
relevance by some examples obtained with the parallel theorem prover RCTHEO.

2.1 Classification of Speedup Functions

Let the service time of a job executed on a single processor be b(l) and, executed
on p processors in parallel, b(p). Then the ratio

(P) = b(l)
s b(p) (1)

is called the speedup function of the job. There are the following basic types of
speedup functions s(p):

lin linear: s(p) = p
sub sublinear: s(p) < p
sup superlinear: s(P) > p
sat saturated: s(p) < p; lim.,,-+oo s(p) = Smax

ret retrograde: s(p) drops after it has reached its maximum

Fig. 1 shows typical instances of the five basic shapes. The first three types sub,
lin, and sup cannot occur in real parallel systems since they are unbounded.
Every realistic speedup function has an upper bound (and thus is of type sat
or ret) since the parallel service time has a lower bound due to the discrete
character of all computation proccesses.

Although the types sub, lin, and sup do not occur in practice, they can be
used to describe the behaviour of a parallel system for a number of processors,
up to which the saturation effects can be neglected. Clearly, the classification
scheme is applied to the speedup function in the region 1 ~ p ~ II: where II: is the
maximum number II: of processors available on the actual hardware architecture.

2.2 Different Problems and their Speedup Functions

Most computational tasks can be classified into AND-problems and OR
problems!. An AND-problem is one which consists of a set of solvable sub
problems which must all be solved, whereas for an OR-problem it is sufficient
to solve only one of a set of subproblems. If an AND-problem with serial service
time (= total amount of work) b(l) is solved in parallel with p processors, the
shortest possible service time b(p) is equal to

b(p) = b(l) , and s(P) = p,
p

1 For reasons of simplicity we do not consider AND/OR-problems as they are hierar
chical combina.tions of AND- a.nd OR-problems.

www.manaraa.com

s(p)

51

8«

~_..,....~-"'--=-:-~-.--- -------- ------ 8Ma%TeI

Tel

P opt Tel p

Fig. 1. Speedup-functions: lin: linear, sub: sublinear, sup: superlinear, sat: saturated,
ret: retrograde.

if work can be partitioned into p independent equal parts and no overhead for
parallel execution is performed. Hence, the best possible speedup function ob
tainable with AND-parallelism is of type lin. 2 Superlinear speedups of class sup
are impossible in case of AND-parallelism, since the total amount of work is
fixed3 and equals b(l).

In case of OR-parallelism, however, superlinear speedups are possible as
we will show now. Assume an OR-problem Q consisting of n subproblems
Ql, ... , Qn of equal size u, i.e. after u computation steps the solver either re
turns a solution or a failure message for each subproblem. Suppose exactly one
of the n subproblems (say the i-th subproblem) is solvable. If the sequential
solver examines the subproblems in the order of increasing indices it will take
i . u steps to solve the problem. For solving the problem in parallel, we as
sume that each of the p processors gets an equal number m of subproblems, i.e.
3m E IN: n = m . p. We distribute the n subproblems onto the p processors,
such that the j-th processor gets QU-l)m+l, . .. ,Qim.

Now, let p = 2, n = 6, i = 4, i.e. we have the situation illustrated by

IQ1 Q2 Q31 IQ4 Qs Q61
processor 1 processor 2

with two processors solving the six subproblems Q1, . .. , Q6 and a solution

2 Here we neglected that every speedup function has an upper bound.
3 Due to e.g. memory contention effects in the sequential system, b(1) can be more

tha.n the total amount of useful work to be done, which can lead to superlinear
speedup. For a detailed discussion of such effects see [1].

www.manaraa.com

52

yielded by 04. Then we get bel) = 4u, b(2) = lu and

s(2) = 4.

It can be shown4 that s(p) < p for the above problem, if we use average
service times to compute the speedup as

with

bel) = ~ L bel) n.
all permuta.1ions 01

{Ql,· .. ,Q,,}

s(p):= bel)
b(p)

and
- 1
b(p) = "I n.

L b(p).
a.ll permuta.tions of

{Ql,· .. ,Q,,}

This result only holds for subproblems of equal size. In the next example
we will see that for subproblems of different size superlinear speedups are still
possible. Let 01,02,03,04,05 be of size lOOu and 06 of size u. Then the average
sequential service time is bel) = 25lu. With 6 processors we get b(6) = lu which
results in s(6) = 251. This shows that strongly superlinear speedups appear quite
naturally in OR-parallel problem solving.

These super linear speedups are caused by the fact that the amount of work
w to be done for solving the problem is, in case of OR-parallelism, not con
stant w.r.t. the number of processors. In case of time-dependent degree pet) of
parallelism we define w as

fb(p)
w = Jo pet) dt.

For constant pet) = p during service time the integral simplifies to w = b(p) . p.
As a matter of fact all five different types of speedup-function occur in OR

parallel search. In figure 2 we show a typical speedup-curve obtained from av
erage run-times ofthe parallel automated theorem prover RCTHEO. 5 This plot
shows for small, intermediate and large p the different types sub, sup and sat in
one speedup-figure.

Figure 3 shows which speedup-types can occur for different classes of prob
lems and algorithms characterized by their CPU-utilization and their work w
as defined above. The upper part of the circle represents full CPU-utilization,
whereas the lower part stands for partial CPU-utilization (loss of efficiency)
through communication, load-imbalance, etc. The left part covers systems which
show a monotone increase of w with increasing p. This is typically caused by
CPU-time (not waiting-time!) spent for communication, coordination-overhead,

4 In case of one solution (as above) the proof is very easy: bel) = ~ L~=l i = ~,
b(p) = l!. ",,,:/p i = !!±e and we get s(p) = (n+l)p < p.

n L..,.,=1 2p n+p
5 The OR-parallel theorem prover RCTHEO [2, 3] is based on SETHEO, a Prolog tech-

nology based automated theorem prover for first order predicate logic [4]. SETHEO
uses backtracking to search for a proof in an OR-search-tree. The parallel search
algorithm used by RCTHEO is called random competition.

www.manaraa.com

Speedup

s(p)

53

RCTHEO-Speedup
500 ,..----r--,---,-----,----,---,
450
400
350
300
250
200
150
100
50
o

o 100 200 300 400 500 600
N umber of Processors k

Fig. 2. Speedup-function obtained with the OR-parallel theorem prover RCTHEO for
the proof of a group-theory problem.

etc. In the right part we have decreasing w with increasing p, which can only
be caused by algorithms whose efficiency increases with increasing number of
processors.

As already mentioned above in case of AND-parallelism, if we have full CPU
utilization and constant w, the resulting speedup shows linear behaviour. If the
work w decreases with increasing p and CPUs are fully utilized (p(t) = p =
constant) we get

bel) bel)
s(p) = b(p) = p. w(p) > p,

i.e. in the upper right part of figure 3 we observe superlinear speedup, which oc
curs in 0 R-parallelism (see example above). If however communication or other
overhead causes increasing w, only sublinear, saturated, or retrograde speedup
behaviour is possible (upper left part). Although the same types of speedup
characteristics occur, speedup becomes even worse, if the CPUs are not fully
utilized.

Even if CPUs are only partly utilized, the speedup may show superlinear
behaviour, depending on the trade-off between CPU-utilization and decrease of
w, as shown in the lower right quarter of the circle. In this region, however, all
other speedup-types can occur as well.

3 Benefit, Cost, and Profit

For the assessment of scheduling strategies, Greenberger ([5]) introduced priority
functions for individually weighted jobs with different urgencies. We adopt his
idea by using benefit functions which give the benefit bf provided by the result
of the computation as a function of the response time y, (see fig. 4).

www.manaraa.com

w increases
with increasing p

(COf'M'l.WllicatiOll ,
<_dVtaliOft_JwuJ.
... at a/goritllmic powo)

54

~=constant

full

wdecreases
with increasing p

CPU -utilization

partial
CPU -utilization

(c~atiOft.

l~~c,

J10-tlf'U«iotu)

(aftDIUIl of",,,,k tKcr.asu)

Fig. 3. Speedup-types in the space of work w and CPU-utilization.

Generally, the larger the response time, the smaller the benefit. In many
cases, the benefit will drop sharply for a given response time (deadline, realtime
constraint) .

We assume the benefit to be measured in money. This makes the benefit
commensurable with the cost of the result. The difference of benefit and cost
shall be called profit. For a computing facility, an optimal operational strategy
would be maximizing the profit rate. By this we define the sum of the profit
gained in our benefit/cost model, divided by the time interval in which we sum
up profit. Correspondingly, we define a benefit rate and a cost rate of the system
operation and the system. The cost rate of a system is constant, independent
of its utilization, as long as we do not consider changes in configuration. This
simplifies our analysis.

4 Profit of Serial Computations

To understand the consequences of our terms of benefit, cost and profit rate
and their dependence on the degree of multiprogramming, we first consider a
monoprocessor computing system which executes a stream of serial (i.e., not
internally parallel) computations, f jobs (degree of multiprogramming) at a time.
It is well known ([6]) that, due to Little's Formula and the existence ofthe mean

www.manaraa.com

55

benefit bf(y)

high weight

low weight deadlines \

response time y

Fig. 4. Benefit functions bf(y) ; y response time.

service time b as a minimal mean response time y and the bandwidth c as
the maximal throughput of the system, there are basic relations between mean
response time y, throughput d, and mean degree of multiprogramming 7 (see
fig. 5). Of particular importance is the saturation degree of multiprogramming,
f* = b * c, as it separates the range of low load from that of high load and as the
value of f* gives the throughput gain that can be achieved by multiprogramming.

d /
c -/-

7/5 /
.%

1*

b I----~-:;:;--:::::-~ -

1*

f

7
Fig. 5. Throughput d and mean response time y as a function of the mean multipro
gramming degree 7 of the system. c : system bandwidth (maximal throughput), Ii :
mean service time, f* : saturation degree of multiprogramming.

www.manaraa.com

56

To see the influence of the mean multiprogramming degree 7 on the profit
rate, see fig. 6. By mapping the benefit bf(y) via y(7) on 7, we get bf(7),
i.e. benefit as a function of the degree of multiprogramming; bf(Y) depends on
the distribution of y because of the nonlinear bf(y). Notice that bf(7) will be
roughly constant up to f* and will then follow the shape of bf(Y), though some
how stretched. This form of our benefit function opens the way to the benefit
rate, which is

bfr(l) = d(l) * bf(f) (2)

as any completed computation (average d per time unit) will render a mean
profit bf and thus establish the profit rate bfr. Graphically, this multiplies the
plot bf(l) with that of d(l) which was already considered in fig. 5. A major
insight is that the benefit rate is maximized in the neighbourhood of f* as
below there is the (nearly) linear rise of the throughput and above there is the
generally declining characteristic of the benefit function. The profit rate is the
difference between benefit rate and cost rate. The latter is constant for a given
configuration, as we stated above.

Clearly, at a low degree of multiprogramming, the system is not profitable
because the throughput is too low. At a high degree it is not profitable because
it cannot deliver results in time. Our result is roughly independent of the shape
of the benefit function beY) if this is declining at all.

5 Profit of Parallel Computations

For the analysis of the optimal operation of a parallel processing system, we
use the same technique as in the serial case. The parallel case, however, is more
difficult, because there are two degrees of freedom in parallelism: intra-job par
allelism p and inter-job degree of multiprogramming f. Their product may equal
or exceed the system capacity k (number of processors); in the latter case we
have a multiplexed mode on processors. Obviously, assuming there are enough
tasks available, it should be avoided not to use all processors (i.e. avoid p* f < k).

We will assume that the computational resource (given by the set of proces
sors) is the bottleneck of the system, i.e. its utilization is higher than that of any
other resource. So, the system bandwidth c is limited by the bandwidth of the
set of processors, and

k
c= -

tv
(3)

where k is the number of processors and tv is the mean work per task.
If the mean processor utilization under uniprogramming is p, a throughput gain
of up to 1/ p is achievable by multiprogramming.

Multiprogramming, however, is also advisable, if the tasks are able to use
the processors continuously (p = 1), but show a steep increase of mean work
w under rising parallelism, such that the service time remains constant or in
creases (saturated or retrograde speedup case). Then, multiprogramming by
(maybe dynamical) partitioning of the processor system is advisable; each task

www.manaraa.com

57

y(bl)

~
Ii L--_- (

- ----?

I

I
7 bl

t -- - ~
)

~ -.
~ 7 ,

bl,
c,

~_b_Il_' := blm * df
pfr • cr
--- -1-'-

7

Fig. 6. Mean response time y as a function of mean multiprogramming degree 7 and of
benefit bl; benefit bl, throughput d and benefit rate blr as functions of T bl(f) and
blr(f) are constructed by functional composition, In the bottom diagram, the cost rate
characteristic cr of the system is included, leaving the profit rate plr as the difference
between benefit rate blr and cr,

gets a partition with a sub capacity at which there is no saturation or retrograde
speedup,

Generally, we follow the analysis pattern which we used for the serial sys
tem, Mean service time and system bandwidth are now, however, not constant,
but functions of the (intra-) task parallelism p, For the service time, this func
tion is usually expressed indirectly by the speedup, For our analysis, the direct
representation, as in fig, 7, is more favourable,

Similarly as service time, the mean work w(p) may be constant, rising, or
declining, Speedup characteristic and w(p) characteristic are not independent
(see fig,3),

www.manaraa.com

b(p)

b(1

1 Popt

58

ret

lin

sat

sub

Fig. 7. Service time b(p) under parallelism p for different speedup characteristics.

So we have a system bandwidth

which is also a function of p.

k
c(p) = iii(p)

p

(4)

Let us first assume c(p) = constant, i.e. iii(p) = bel); thus parallelism does
not change mean work. Our analysis leads to fig. 8. Reducing the service time
is the only effect of rising parallelism; however, under saturated or retrograde
speedup, there is a lower bound for service time, beyond which service time is
not reduced any more.

The resulting benefit rate function bfr(p) shows for linear or sublinear
speedup that maximizing p will maximize the benefit rate and that this will
imply a small degree of multiprogramming, near rep). More precisely,

rep) = b(p) * c(p)
b(l) k k = --*--=--s(p) bel) s(p)

In the linear case, we have
s(p) = p

and

rep) = ~

(5)

(6)

(7)

as p:::; k, rep) ~ 1 . bfr(p) is maximized by p = k which gives r(k) = 1. So
we have uniprogramming as the operation mode with the highest benefit rate.
For a sublinear case, we may assume e.g.

(0 < a < 1)

www.manaraa.com

59

bl 1 bl

Spo 4po 2po

1

1

1
Fig.8. Benefit rate blr and profit rate plr under various degrees of parallelism po,
2po, 4po, 8po, constructed as in fig. 4, for constant system bandwidth c.

above a certain p > 1 (in compliance with the requirement s(l) = 1), and get

rep) = _k_
a*p

(8)

and at least (p = k)

r(k) = .!. > 1
a

As w(p) = constant, a reflects a mean underutilization of the processors by
(1- a) * 100%. It is optimal to compensate this by a multiprogramming degree
in the range of l/a.

www.manaraa.com

60

In the saturated or retrograde case, there is no shorter service time beyond
p = Popt .
So, we have

r (p) = ~ > 1 for Popt < k
Popt

in the best case, and multiprogramming in the range of _k_ should be applied.
Popt

We now omit our prior assumption w(p) = constant, i.e. parallelism changes
mean work. The results are shown in fig. 9. Rising P will (except for the saturated
and retrograde cases) decrease service time b(p), but it may increase or decrease
mean work w(p).

In the case of rising w(p) we have two adverse effects on the benefit rate:
decreasing service time improves the behaviour at low values of], while the
decreasing bandwidth deteriorates the behaviour at high values of f. Whether
this leads to optimal points of operation at high p and low], as seen before,
depends on the relative effect of p on service time b and bandwidth c.

In the case of falling w(p) the arguments are much simpler. This case, which is
implied by superlinear speedup, of course recommends to choose high parallelism
p.

In both cases, underutilization of processors makes multiprogramming opti
mal in the range of f*(p) according to formula (6). In the case of falling w(p),
it can be preferable not to introduce further jobs to use the idle processor time,
but to choose p > k, as this will not only lead to full processor utilization but
also deliver a further reduction of w(p) !

6 Consequences for Parallelism and Multiprogramming

Our analysis has been restricted to tasks of equal benefit functions. The impor
tant case of different benefit functions is much more complex; it also opens the
scene for benefit-dependent service strategies.

Furthermore, we assumed that the processors are exchangeable in their role
and neglected the multiprogramming overhead, such as for control and context
switching. Multiprogramming needs additional memory; if our parallel comput
ing system needs replicated code, this can be an important cost factor. However,
our model could respect this by a cost rate rising with f.

Principally, of course, one can simulate the favourable behaviour of a parallel
computing system under jobs with declining w(p) by a time slice simulation on
a serial computing system and win an equal advantage. Technically, one has to
choose the size of the time slices so that one gets an optimal balance between
time slice overhead (which is in favour of a long slice) and preferential treatment
of the short subproblems (which excludes time slice longer than the execution
time of the short subproblems). As the execution times are not known, however,
one is in danger to miss either efficiency or selectivity of the regime.

Our arguments for multiprogramming were mainly economical. Considering
a parallel computation server, there are also reasons for an adequate response
ratio (i.e. ratio of service time to response time) in favour of multiprogramming.

www.manaraa.com

61

bf

d

w(p) rising 7
7---------iJ~--/ ~ ------=---=--=--=--t =- =-::::::. w(p) falling

/ / -- - -- Po----
/ /7--/'--..-'--- --~ ~ -i---=---=---=- w(p) rising
~ ------T,,----

]J

7
bIT, C7'

w(p) rising

w(p) falling

bf

Fig.9. Benefit rate bfr and profit rate pfr under various degrees of parallelism p,
constructed as in fig. 4/6, for the rising/falling w{p)-cases. y mean response time,
p parallelism, w mean work, 1 mean multiprogramming degree, bf mean benefit, d
throughput, bfr benefit rate, CT cost rate, pfr profit rate.

www.manaraa.com

62

So far, our recommendations for maximizing the profit, which need more
detailed analysis in some cases, are:
(1) Choose parallelism p such that the benefit rate is maximaL This implies

- for the saturated and retrograde case P :::; Popt. If Popt < k and the tasks
have high processor utilization, the system should be partitioned under mul
tiprogramming if this reduces overhead.

- else P = k for the case of constant or decreasing mean work w(p)j otherwise
the optimal P will depend on the relative effect of P on service time Ii and on
work W.

(2) Choose multiprogramming with a degree in the range of r(p) (or slightly
above) whenever r(p) = b(p) * c(p) ~ 1, where p is selected as stated above.

We may sum up our guidelines in the work/utilization diagram
fig.l0 (compare also fig.3). The diagram establishes the relation between types
of speedup functions, degree of parallelism, and degree of multiprogramming.

linear speedup

unlprogrammlng ••.......•••••......•
multiprogram
ming

w increases
with increasing p

(cOlM1Wlicaboll.
coordiN>1ioIl-ovuluad.
w.<Ik Illgo~ puwu)

V =constanl

w decreases

full

CPU-utilization

........................

partial
CPU-utilization
(C~aM".
/oad.jmbQJQIIC ••

/IO·OfHraliolU)

with increasing p
(amowu ofworttUcr~ ...)

Fig. 10. Guidelines for parallelism p and uni/multiprogramming in a parallel system
with k processors, depending on mean work per task and processor utilization.

www.manaraa.com

63

7 Comparison with Related Work

In this section, we want to set our approach and it's results into perspective to
related research and common practice.

It is well known that the number of processors which maximizes the speedup
for a parallel algorithm may not lead to an efficient use of processors (e.g. [7], [8],
[9]). This is easily understood considering the common speedup characteristic sat
(see figure 1): after a certain point, a large number of additional processors is re
quired just to obtain tiny speedup improvements. Thus, the ideal working point
for a particular task should optimize the speedup over cost ratio, rather than
speedup alone. Various researchers suggested therefore to minimize p x (b(p)y
([7], [9]) or, equivalently for r = 2, to maximize Ex S (= ~2 = p!(b1(rp; efficiency

E = S~p» instead ([8]). The most general results in that regard (including a good
sketch of related approaches) are found in [9], where p x (b(p)y is minimized
depending on the overhead characteristics (overhead as a function of p) of the
task. Raising b(p) to it's rth power allows the system designer to give a prefer
ence to speedup or utilization, whichever is the operational goal for the system
(see also [10]). For our considerations, the effect of the parameter r is hidden
in the benefit function. That function defines the penalty for trading speedup
for efficiency. Thus, in effect, it defines the operational goals for the affiliated
program. Since we assumed the same benefit function for all tasks, this amounts
to a coverage of the operational goals for the parallel system.

In [11], the power of a parallel system is defined as processor utilization
divided by the mean response time. Besides an analysis deriving the number of
processors which maximizes the power for a single task for different workload
models, the authors also evaluate the case where tasks arrive at a Poisson rate
(but tasks can be processed only one at a time, i.e., no multiprogramming). They
found that the number of processors which maximizes the power is independent
of the task arrival rate for their model. However, as pointed out, this result does
not apply for multiprogramming.

In [12], Eager et.al. propose the maximum of the ratio of efficiency to execu
tion time as a desirable point of operation ("knee in the execution time-efficiency
profile"). They argue that taking efficiency and execution time as indicators for
payoff and cost, respectively, or doing so vice versa, leads to two different op
erationalobjectives, both of which are optimized at the knee (these objectives
are achieving efficient processor usage taking execution time as a cost measure
versus achieving low execution times taking efficiency as a cost measure). They
remark that for multiprogramming, low efficiency should be avoided by allocat
ing processors to tasks according to the number of processors proposed by the
knee in the program's execution time-efficiency profile.

In summary, related research so far mainly concentrated on the optimization
of the speedup or execution time over cost ratio for individual tasks. For mea
suring the cost of a parallel computation, either efficiency or execution time have
been used. In both cases, often the traditional definition of execution time as the
number of processors times parallel execution time (p x b(p» has been used (with

www.manaraa.com

64

the exception e.g. of [11]). However, defining the expenditure of resources for the
parallel computation as p x b(p) is only accurate assuming the exclusive usage
of the parallel machine. While this has been the standard for a long time, nowa
days typical parallel machines can be used in multiprogramming environments.
The ability of a parallel machine to handle requests for and freeing of nodes
during the computation of an application requires to take into account dynami
cally changing numbers of processors for an accurate definition of computational
costs. In order to do so, we proposed to take the amount of work actually spent
for a parallel computation (W(p)) as a measure for its computational costs (note
that W(p) ::; p x b(p) for any algorithm, i.e. the new definition results always in
less or equal costs than the traditional one). It should be added that for realistic
taxation strategies the total system costs should be distributed among the users
(viz. programs), which means that idle times are also proportionally charged for.

Then, a fair assessment of computational costs could be based on ~, where €

is the system utilization of the maximally requested system fraction during the
computation.

In summary, the major differences between our approach and other research
are the goal of optimization and the assessment of computational costs. As de
scribed above, researchers so far have been interested in the number of proces
sors that optimize important criteria of the performance of a single program,
typically based on speedup and efficiency characteristics of the program. For
multiprogramming systems, those results lead to a straightforward and simple
operating strategy, where each task obtains the number of processors which opti
mize its performance (local optimization). In this paper, however, we approached
optimization from the viewpoint of overall system optimization, accepting that
this might not be optimal for a particular task (global optimization).

Acknowledgements.
Many thanks to Heidi Bruckner for her help in preparing this manuscript.

References

1. D.P. Helmbold and C.E. McDowell. Modeling Speedup(n) greater than n. In
Proceedings of the International Conference on Parallel Processing, pages 111-219-
225, 1989.

2. W. Ertel. OR-Parallel Theorem Proving with Random Competition. In Proceed.
ings of LPAR'92, pages 226-237, St. Petersburg, Russia, 1992. Springer LNAI 624.

3. W. Ertel. Parallele Suche mit randomisiertem Wettbewerb in Inferenzsystemen,
volume 25 of DISK!. Infix-Verlag, 1993.

4. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance
Theorem Prover. Journal of Automated Reasoning, 8(2):183-212, 1992.

5. M. Greenberger. The Priority Problem. Technical Report MIT-MAC 22, 1965.
6. R.R. Muntz and J. Wong. Asymptotic Properties of Closed Queueing Network

Models. Proceedings of the Eight Annual Princeton Conference on Information
Sciences and Systems, 1974.

www.manaraa.com

65

7. M. Barton and G. Withers. Computing Performance as a Function of the Speed,
Quantity, and Cost of the Processors. In Proceedings of the 1989 International
Conference on Supercomputing, pages 759-764, 1989.

8. H.P. Flatt and K. Kennedy. Performance of Parallel Processors. Parallel Comput
ing 12, pages 1 - 20, 1989.

9. A. Gupta and V. Kumar. Analyzing Performance of Large Scale Parallel Systems.
Technical report, University of Minnesota, 1992.

10. L. Kleinrock. Power and Deterministic Rules of Thumb for Probabilistic Problems
in Computer Communications. In Proceedings of the International Conference of
Communications, pages 43.1.1-43.1.10, 1979.

11. L. Kleinrock and J.-H. Huang. On Parallel Processing Systems: Amdahl's Law
Generalized and Some Results on Optimal Design. IEEE Transactions on Software
Engineering, 18(5):434--447, 1992.

12. D.L. Eager, J. Zahorjan, and E.D. Lazowska. Speedup Versus Efficiency in Parallel
Systems. IEEE Transactions on Computers, 38(3), 1989.

www.manaraa.com

The Distributed Hardware Monitor ZM4
and its Interface to MEMSY

Richard Hofmann
email: rhofmann@immd7.informatik.uni-erlangen.de

UniversiW Erlangen, IMMD VII

Abstract

Computers, especially parallel and distributed systems, are highly complex.
Even more complex a task is programming such systems in order to get them
run correctly and efficiently. This is due to the manyfold interactions between the
processes running at the same time while carrying out a common task. Monitoring
is a valuable technique to analyze and understand the dynamic behavior of parallel
and distributed software. We prefer hybrid monitoring, a technique which combines
advantages of both software monitoring and hardware monitoring.

The paper contains a description of a hardware monitor ZM4 which makes our
concepts available to programmers, assisting them in debugging and tuning of their
code. This is followed by a short survey of the interfaces between ZM4 and a variety
of object systems, which make the ZM4 a universal monitor system. Finally, the
interfacing to MEMSY is described as the result of a fruitful cooperation between
the hardware, software and performance evaluation group in the project.

Keywords: hardware monitoring, hybrid monitoring, event-driven monito
ring, instrumentation. performance evaluation, debugging, parallel and distributed
systems, MEMSY.

1 Introduction

Users and operators of parallel and distributed systems often find it very difficult to
exploit the immense computing power at their disposal. Writing and debugging parallel
programs which use the underlying hardware in an efficient way proves to be a difficult
task even for specialiSts. There is typically not enough insight into the internals of the
hardware, the system software and their corresponding effect with the user program.
Bugs are hard to locate, and tuning, which depends on a detailed knowledge of such
factors as idle times, race conditions or access conflicts, is often not done systematically
but by using ad-hoc methods. To analyze the functional behavior and the perfonnance
of a parallel program it is not enough to employ standard methods such as profiling and
accounting. Sophisticated methods and tools are needed to handle these issues.

Event-driven monitOring is a technique well-suited for analyzing programs running
on a parallel or distributed system. It can be done by hardware, software or hybrid
monitoring, where the last combines advantages of both hardware monitoring and
software monitoring. In order to be able to cope with both sorts of hardware oriented
monitoring, we built a universal distributed hardware monitor system (ZM4), which can
be adapted to arbitrary object systems (the system on which the program under study is

www.manaraa.com

67

running). Additionally, ZM4 is scalable, and it has a high-precision global clock which
allows to monitor several nodes of the object system simultaneously, providing globally
valid time stamps.

The paper is organized as follows: after briefly stating our notion of hybrid moni
toring, the basics of the hardware monitor ZM4 are described. We then present an
overview of the currently available interfaces between the ZM4 's infra structure and
different object systems, emphasizing the fact that building a new interface to a uni
versal monitor is the same as building a complete monitor for that object system. Finally
the interface to MEMSY will be shown from concept to implementation both in the
hardware part and the driver software.

2 Hybrid Monitoring

Event-driven monitoring represents the dynamic behavior of a program by a sequence of
events. It is the only monitoring method (in contrast to time-driven monitoring) suitable
for efficient program analysis [6], as the aim of monitoring is gaining insight into
the dynamic behavior of a parallel program. Time-driven monitoring (sampling) only
provides statistical information about program execution and is therefore insufficient for
behavior analysis. An event is an atomic instantaneous action. The definition of events
depends on the monitoring technique used. There are three monitoring techniques:
hardware, software and hybrid monitoring.

Using hardware monitoring, the event definition and recognition can be difficult and
complex. An event is defined as a bit pattern on a processor bus or in a register. It is
detected by the probes and detection circuitry of a hardware monitor. In this case it is
difficult to relate the recorded signals to the monitored program, i.e. to find a problem
oriented reference. Using software or hybrid monitoring, the events are defined by
inserting monitoring instructions at certain points in the program under investigation
(program instrumentation). These instructions write an event description into a reserved
memory area of the monitored system (software monitoring), or to a hardware device
which is accessible for a hardware monitor (hybrid monitoring).

In defining events by program instrumentation, each monitored event can uniquely
be associated with a point in the program; this provides a source-related reference. Thus,
the evaluation of the event trace can be done on the program level which is familiar to
the program designer. As hybrid monitoring combines source-related event specification
with a small interference on the object system's behavior, it is our favorite monitoring
technique.

Whenever the monitor device recognizes an event, it stores a data record (a so
called event record). An event record contains the information what happened when and
where and consists of at least the event description and a time stamp. The time stamp is
generated by the monitor and represents the acquisition time of the event record. Beside
these fields, an event record can contain optional fields describing additional aspects of
the event occurred. The sequence of events is stored as an event trace.

It is strongly recommended to wisely restrict instrumentation to essentials. One
reason is that CPU time overhead increases with the number of events issued. The
other reason is that a problem should be analyzed on an adequate level of abstraction.

www.manaraa.com

68

Therefore instrumentation should be limited to those events whose tracing is considered
essential for an understanding of the problems to be solved. Bearing this common
prerequisite in mind, monitoring is a great help when analyzing programs running in
modem parallel or distributed systems.

3 ZM4 - a Universal Distributed Monitor System

3.1 Demands and Conceptual Issues

A monitor system, universally adaptable to arbitrary parallel and distributed computer
systems, must fulfil several architectural demands. It must be able to

(a) deal with a large number of processors (nodes in the object system),
(b) cope with spatial distribution of the object nodes,
(c) be adaptable to different node architectures,
(d) supply a global view on all interesting events in the object system for showing

causal relationships between events in different nodes,
(e) provide a problem-oriented (source-related) view.

We have designed and implemented a universal distributed monitor system, called
ZM4 (abbreviation for German "Zahlmonitor 4"), which fulfils the demands (a) - (d).
Its concepts for meeting these challenges are:

(a) In order to deal with a large number of object nodes the monitor ZM4 has a
distributed architecture, scalable by allowing an arbitrary number of monitor
agents.

(b) ZM4 interconnects the monitor agents by a local area network. Therefore, monitor
agents need not be spatially concentrated and can also monitor spatially distributed
object systems.

(c) ZM4 is not dedicated to just one object system but can record events from arbitrary
object systems with arbitrary physical event representation.

(d) ZM4 has a global clock with an accuracy of 100 ns. This provides sufficient
precision for establishing a global view in any of today's parallel and distributed
systems.

(e) A problem-oriented view can be achieved by representing measured events and
activities by the identifiers familiar to the programmer.

Issues (a) - (d) are dealt with in this section, containing the description of the
architecture of ZM4 and its major component DPU. Issue (e) is rather a problem
of object instrumentation than of monitoring hardware. However, the ZM4 hardware
monitor supports (e) by accepting a wide variety of physical event formats.

The following considerations are important for the notion of global view in distri
buted systems (see also [4]): monitoring distributed systems or multiprocessors provides
an event stream for each processor. When processors are working on a common task, they
have to exchange information, resulting in an interdependence of their event streams.
One concept to globally reveal all causal relationships is to order events. It suffices to
locally order the events of each processor and to globally order events concerning inter
processor communication. Since local ordering is automatically achieved if the events
are recorded in the order of their occurrence, we can restrict the following arguments to
global ordering.

www.manaraa.com

69

In systems communicating via message passing a global ordering of the communi
cation events can be achieved by the inherent causality of Send- and Receive-operations
[8]. If monitoring shall provide not only a functional sequence of correctly ordered
events but also performance, it is necessary to introduce time. Ouda et aI. describe a
mechanism to estimate a global time from local observations in systems communicating
via message passing [1].

Systems communicating via shared variables lack this easy mechanism to globally
order events and to derive a global time. As the read-access to a shared variable can
immediately follow the (state-changing) write-access, two consecutive accesses to a
shared variable must be ordered correctly. Thus, only a monitor clock with a global
resolution less than the access time to the shared memory allows to globally order
communication events in systems with shared variables. As these demands of time
resolution exceed those for ordering Send/Receive-events by orders of magnitUde, a
monitor using a clock with an accuracy less than half of the access time to shared
memory can be used universally.

3.2 Architecture of the Hardware Monitor System ZM4

The ZM4 monitor system is structured as a master/slave system with a control and
evaluation computer (CEC) as the master and an arbitrary number of monitor agents
(MA) as slaves (see fig. 1). The distance between these MAs can be up to 1,000
meters. Conceptually, the CEC is the host of the whole monitor system. It controls the
measurement activities of the MAs, stores the measured data and provides the user with
a powerful and universal toolset for evaluation of the measured data [9].

The MAs are standard PC/AT-compatible machines equipped with up to 4 dedicated
probe units (DPUs). We use their expandability for configuring ZM4 appropriately to
the various object systems. Each MA provides processing power, memory resources, a
hard disk and a network interface for access to the data channel. The MAs control the
OPUs and buffer the measured event traces on their local disks. The DPUs are printed
circuit boards which link the MA and the nodes of the object system. The OPUs are
responsible for event recognition, time stamping, event recording and for high-speed
buffering of event traces.

A local clock with a resolution of 100 ns and a time stamping mechanism are inte
grated into each DPU. The clock of a DPU gets all information for preparing precise and
globally valid time stamps via the tick channel from the measure tick generator (MTG).
Time stamps in a physically distributed configuration may be adjusted after the measu
rement according to the known wire length. While the tick channel together with the
synchronization mechanism is our own development, we used commercially available
parts for the data channel, i.e. ETHERNET with TCP/lP. The data channel forms the
communication subsystem of ZM4, and it is used to distribute control information and
measured data.

The ZM4's architectural flexibility has been achieved by two properties: its inter
facing concept and a scalable architecture. The DPU can easily be adapted to different
object systems, which will be discussed in sec. 4. ZM4 is fully scalable in terms of MAs
and DPUs. The smallest configuration consists of one MA with one DPU (see fig. I,
left), and can monitor up to four object nodes. Larger object systems are matched by

www.manaraa.com

70

tick

dalll channel

Fig. 1: Distributed Architecture of ZM4

distribut.ed
object system

more OPUs and MAs, respectively. In the following, the OPU architecture, the event
recorder and the globally synchronized clock are discussed in a top-down fashion.

3.3 DPU Architecture

The OPUs implement a functional separation into the three tasks of event processing:
interfacing, event detection and event recording (see general DPU in fig. 2,left).

Dedicated DPU-Parts: The interface has a tight connection to the object system,
so it cannot be universal but must be dedicated to the object system. The event detector
investigates the rapidly changing information supplied by the interface in order to
recognize the events of interest, and to supply the event recorder with appropriate
information about each event. The complexity of the event detector largely depends on
the type of measurement: to recognize predefined statements in a program running on a
processor without instruction cache and memory management unit, a set of comparators
or a memory-mapped comparison scheme suffices. If the object system uses a processor
with a hardware cache, or if predefined sequences of statements are intended to trigger
an event, much more complex recognition circuits will be necessary [7]. In some cases of
hybrid monitoring, the object system itself presents the event description in form suitable
for the external monitor. In this case no event detector is needed, and the interface only
has to adapt the object system to the event recorder electrically and mechanically. So the
event recorder directly captures the event description, which is prepared by the object
system (see simple DPU in fig. 2, right).

Universal DPU-Part: The universal part of a OPU is the event recorder. It is com
pletely independent of the object system. It receives a bit pattern from the event detector
or the hybrid interface, triggered by a signal for its occurrence. Its functionality includes
event capturing, time stamping, event record definition and event record buffering.

www.manaraa.com

71

bit patterns of
up to four object nodes

tick

channel
general DPU

predefined event tokens of
up to four object nodes

event recorder

simple DPU

monitor agent MA (PC/AT)

data channel

Fig. 2: Monitor Agent equipped with OPUs

3.4 Universal Event Recorder

The event recorder has to fulfil two tasks: assigning globally valid time stamps to the
incoming event descriptions, thereby building event records, and supplying a first level
of high-speed buffering.

The interface between event detector or hybrid interface and event recorder is a data
path transferring the event description itself, and a control path signalling the occurrence
of events. The control path mainly consists of four request lines (Reqi) and four grant
lines (Ont;), each pair Req;/Onti servicing an asynchronous and independent event
stream. That means, up to four object nodes can be monitored with only one event
recorder.

Each of the four event streams can be furnished with an arbitrary fraction of the
data field, which in total supplies 48 bits. If at least one of the request lines signals an
event, the DPU's capture logic latches the data field into a 48 bit data buffer in order to
establish a stable signal condition for further processing. The output of this data buffer
together with the flag register (8 bit) and the clock's display register (40 bit) define a 96
bit physical event record. This is written into the FIFO memory within one 100 ns cycle
of the globally synchronized clock.

Each event stream is associated with a bit (El to E4) in the flag register which
indicates that its event stream contributed to a valid event. This mechanism allows to
recognize the relevant part(s) of the data field and ignore the rest of it. Coincidence of

www.manaraa.com

72

from event detector or hybrid interface

tick channel data 48 Reql Gnt4

'-----0 synchr.
...--- oscillator flag

data buffer capture logic

display register
register

~40 ~8 t 48

FIFO-memory 32K*96 control 10 gic

t 96

host interface

~ to monitor agent

Fig. 3: Universal Event Recorder

events in different streams is possible. Then more than one bit in the flag register is
set, meaning that their corresponding parts in the data field are valid event descriptions.
There is an additional bit E. which indicates that a fifth event stream - internal to the
monitor system - has generated a synchronization event from decoding the information
transmitted via the tick channel. The transmitted synchronization information supports
a sophisticated fault-tolerant protocol which allows to prove the correctness of all time
stamps at the synchronization events and confirms a clock skew of less than 5 ns (cf. [4 D.

Providing a bandwidth of 120 Megabytes/s at the input of the FIFO memory, the
event recorder has a peak performance of 10 million events/so The high-speed buffering
having a depth of 32 K event records helps to partly overcome the restricted bandwidth
(10,000 events/s) of the monitor agent's local disc: for a short time bursts of events
can be recorded and buffered in the FIFO even if the mean event rate of the disc
will be exceeded by orders of magnitude. In case of a buffer overflow, a flag is set in
the following event record. A second advantage of the FIFO buffer architecture is the
ability to read the FIFO buffer while monitoring is going on. This enables continuous
monitoring, i.e. there is no restricted maximal length of a trace. So, a high input event
rate and arbitrary trace length add to the universality of this event recorder.

www.manaraa.com

73

4 Interfaces

Within the ZM4 concept, an interface has the task to electrically and mechanically adapt
the object system in order to record the events occurring in the object system. As the
object systems differ in their behavior and the questions to be answered by monitoring
vary, a wide variety of interfaces has evolved. These interfaces can be devided into
three classes, starting from basic interfaces for already existing parallel output ports
of computers to interfaces for direct adaptation of microprocessor buses, and ending
with intricate special purpose interfaces. All of them can arbitrarily be combined when
carrying out a measurement. As the following subsections show, building an interface
between theZM4's infra structure (i.e. all parts oftheZM4 except the interface) has the
same result as building a powerful new monitor for this system from scratch at only a
small fraction of the effort and cost.

4.1 Interfaces for parallel computer ports

In the case the object system itself already has a parallel output port, e.g. for a parallel
printer, this port can be used by the instrumentation (Le. the pieces of software respon
sible for recognizing events and informing the monitor about it) for putting out the event
description when a specified event occurs. The task for the interface designer merely
is to correctly connect the output port's signals (normally these are 8 data bits and one
strobe bit) to the input connectors of the event recorder.

As such interfaces typically only utilize a small fraction of the event recorder's 48
bit wide data field, obviously up to four object computers can be connected to one
event recorder. This is possible due to its ability to deal with four event streams at the
same time without any interference between them; Interfaces like these can easily be
prototyped and quickly used for real measurements. Currently we have at our disposal
the following interfaces:

Interface

DIRMU interface
Transputer link interface
Centronics interface (printer)
MEMSY interface

I streams I width/stream I
[bit]

4 8
4 8
4 8
I 32

This table with simple interfaces already reveals that the ZM4 can easily be adapted
to numerous and quite different object systems. Especially the Centronics interface can
be used for nearly all PCs and many workstations.

4.2 Interfaces for Microprocessor Buses

Not always 8 bits are sufficient for coding all information associated with an event,
and not always a parallel port is available and can be used for monitoring purposes.
1YPically such parallel ports are missing in multiprocessor systems, e.g. transputer
systems, whose I/O-activities normally are carried out by a dedicated host computer.
An interface directly connected to the processor pins (or the backplane bus) allows to

www.manaraa.com

74

adapt the ZM4 to this particular system with moderate effort, too. Such an interface has
to be organized in a way, that the object system regards it as a peripheral device, and
that it agrees with the simple protocol of the ZM4 's event recorder.

Technically spoken, such a microprocessor bus interface is a parallel port to be
installed in the object system's hardware, which has to fulfil the same task as an
interface already installed also would have to do. The data path width of the parallel
interface typically will be fixed at a value which allows to utilize the whole data path
width of the event recorder. This allows for allocating 16 bits for the coding of the event
itself (Le. 65536 different events can be distinguished) and 32 bits for event attributes;
this meets the requirements of the today's very popular off the shelf microprocessors.
If this wide data path is not necessary for a particular monitoring application, it is of
course possible to connect more than one interface to an event recorder by simply using
an event stream with its associated Req-signal and allocating the necessary number of
bits in the data path. A combination of whatever interfaces are needed can easily be
done by forking the flat band cables between the event recorder and the interfaces, and
combining corresponding parts of the cable to the connectors of the interfaces.

Since the ZM4 project was launched, the following interfaces have been developed
and successfully used:

Interface for SMP-Bus: This interface is only 8 bits wide, the natural width of the
SMP-bus, because every access of the processor to memory/io transfers one byte of
data. It was used in combination with the single signal interface, described in the next
subsection.

Interface for SUN4/390: This interface adapts the ZM4 to the backplane bus of
the SUN server; it is 16 bits wide and can be accessed by arbitrary processes running on
the server in system and user mode in order to put out event data to be recorded by ZM4
or any other monitor device connected to it. In order to allow a user process accessing
a hardware resource like this, a dedicated driver has been incorporated into the UNIX
operating system.

Interface to Transputer: The Transputer bus interface adapts the ZM4 (more pre
cise: the event recorder) to the 32-bit family of Transputers, i.e. the T414, T425, T800,
by directly accessing the signals atthe socket of the respective microprocessor. For this
purpose a dedicated fixed/flexible printed circuit board was developed, which grabs all
relevant signals of the Transputer via an intermediate socket, and connects them to the
interface board on the other side. An event is signalled the external monitor via this
interface by an assignment to a variable, which is located in a memory area not occu
pied by existing RAM. The hardware signals associated with this assignment are then
recognized by the interface and transformed into an event description and the request
signal. This mechanism allows to transfer all 48 bits within a single instruction: 16 bits
are transferred within the address and 32 bits as the value assigned, yielding in a very
low overhead for signalling an event to the ZM4.
A special feature of this interface is the hardware event filter integrated in it, which
allows the inclusion or exclusion of each possible event separately: the 16 bit portion
of the event data from the object system is compared with the set of all events to be
included, and only if the event matches, a request to the event recorder will be issued.
The information which events are relevant or irrelevant is specified by the user of the

www.manaraa.com

75

monitor; specifying these events is possible by defining ranges of events and in terms of
binary patterns. This user supplied information is parsed, transformed and transferred
to the interface via the event recorder using a serial protocol.

5 The Interface to MEMSY

The Interface to the multiprocessor system MEMSY, which is described in detail else
where in this volume, is the result of a fruitful cooperation of the hardware and software
developers on the one side and the monitoring and performance evaluation group on the
other side. As was stated earlier in sec. 4.1, the interface to MEMSY forms a 32 bit wide
information path dedicated for putting out event descriptions for the ZM4 from the user
or system level in MEMSOS, which is an extended and adapted version of the UNIX
operating system. This information path consists of a hardware part and a software part,
which are described in the remainder of this section.

5.1 Hardware

As MEMSY is a modular system not only at the top level where the computers are
interconnected to a pyramid topology, but also on the module level, where (off the
shelf) processor boards and (proprietary) interconnection boards are combined to form

32 bit t ntro1 multiplexed lines
address/data
bus

- address decoder f---......

,~ , r , ,
register register register register
byte 0 byte I byte 2 byte 3 , + + +

Fig. 4: Hardware Structure of MEMSY interface

, event
signal

32-bit
event
description

a MEMSY module, an elegant solution could be found to integrate the monitor interface
into MEMSY. As can be seen from Hofmann et al. [2] in Fig. 3.1 elsewhere in this

www.manaraa.com

76

volume, the measurement interface is connected to the local bus of the MEMSY nodes,
which allows an access time to it as small as the access time to the local high speed
memory, yielding a minimal hardware overhead.

In fig. 4 the hardware structure of this interface is shown, with the signals of the
local bus entering in the upper left comer. The 32 bit wide multiplexed address/data
bus is connected to the address decoder and four 8 bit registers, which store the event
description for the external monitor [3]. When an event occurs, an integer value can
be written into this register array, which usually is a unique identification of the event
occurred. The output of this register, together with the clock signal derived from the
address decoding, is fed to a connector on the front panel of the MEMSY-module. By
this way, the external part of the interface between this dedicated parallel monitor port
of MEMSY and the event recorder of the ZM4 could be reduced to a simple fiat band
cable with the appropriate connectors on each side.

A timing diagram of this interface is shown in fig. 5. On the upper line the sequence
of address data pairs on the multiplexed address/data bus is drawn. Let us assume, that
the first A-D-cycle is caused by a monitored program, putting out an event description
caused by an event occurring. When this happens, the address decoder recognizes the

multiplexed t-""'''--V-''-'''--''r---1,r--....,,....,ri 1--...,,,..-...,,....,,.....,,..-...,,.-,,...,,.-

address/data
bus ~~L-J_~~I~L-~L~~~~~L-JI~~-A_~L

event
signal

event
description

event#n event#n+l

Fig. 5: Hardware Structure of MEMSY interface

corresponding address together with a certain combination of the control lines on the
local bus. Immediately after the contents of the multiplexed address/data bus change
from the address- to the data part, the data part is copied into the registers and at the
same time the occurrence of the event is signalled to the external monitor by means of
the positive going edge of the event signal. This marks the time of the event.

S.2 Software

Astonishingly, the greatest challenge in making a computer system accessible to hybrid
monitoring is not building the interface hardware, but finding a fast way for putting out
the event description from the user level (which normally is of interest) to the hardware

www.manaraa.com

77

port dedicated to monitoring. The reason for this difficulty lies in the virtuality of
modem processor architectures, and the operating system making use of this and the
corresponding memory and io protection mechanisms. So, it is normally impossible for
a process running on the user level of a UNIX operating system to directly access any
hardware resource, except the memory mapped to this process by the hardware built
into the processor. While the mapping of virtual memory addresses to physical memory
addresses is carried out by the processor hardware very efficiently, this is not true for
accesses to any other hardware resources. In order to do that, the operating system has
to be requested which actually carries out the requested access for the user process.

This imposes a considerable overhead in the very simple transactions necessary
for putting out the small amount of data for an event description: for handling the
event description itself approximately I to 5 assembler instructions are needed, but
using the standard way for accessing hardware resources in UNIX and many other
operating systems usually accounts to typically about 200 to 500 assembler instructions,
as we investigated while developing the interface for SUN4/390 [12], the SUPRENUM
interface [10] and the Centronics interface applied to software running under the SCO
Xenix operating system [5].

The standard way for accessing hardware resources as discussed before is to write a
device driver and link it to the operating system kernel. This allows for a standardized
interface between software- and hardware-resources. The effect of such an interface is
1) a change from user level to the operating system level, resulting in saving all registers
of the user process and restoring them from the system values 2) a table lookup in
order to find the driver code, 3) a call to the driver routine, and 4) a change back to
the user level. The most time consuming part of this procedure is the twofold change
in the protection level which is carried out by the operating system itself, and serves to
completely isolate the system state from the user state, and at the same time to isolate
all user processes from each other.

Although this mechanism provides nearly perfect protection of the operating system
and user processes from erroneous behavior of a particular process, a lot of work is done
not necessary for simply putting out one or two machine words to a parallel port. At this
point the operating system crew within the MEMSY project incorporated an optimized
system call for monitoring into MEMSOS [11], which only needs about 50 assembler
instructions, and the time needed for putting out a 32 bit wide event descriptions amounts
to about 4 micro seconds. This reduction in comparison with the standard way is due to
restricting the storage and restorage of registers to the absolute minimum necessary for
carrying out that particular task.

To the programmer or user, who wants to make use of this new capability, the
system call can be accessed by a set of procedure calls in the standard library just in
the same way as any other procedures can be dealt with. Before event descriptions
can be put out, the interface software has to be initialized with the parameterless
procedure mmessopen () , which checks if the interface is already in use by an other
application. After successfully returning from mmessopen, event descriptions can be
put out with mmes s ou t (event description) where event description can be an arbitrary
number with type long into Every call to mmessout triggers the software and
hardware activities as described before. After finishing the measurement activities,

www.manaraa.com

78

the measurement interface should be freed for other processes with the procedure
mmessclose () . This releases the interface, and all subsequent calls to mmessout

will be ignored.

6 Summary

In this paper the concept of event-driven monitoring was introduced as an aid for
abstracting the complex dynamic behaviour of a parallel or distributed computer system
to a wisely selected number of events of interest. This kind of abstraction has two
main advantages: 1) the amount of monitored data is dramatically reduced, and the data
monitored is interesting in terms of the level of abstraction defined. 2) The same concept
of events is used in the field of specification and modeling of parallel and distributed
systems. So event-driven monitoring can be used to augment the pure functional models
resulting from algebraic specification with realistic performance parameters.

Additionally the monitored event traces can be analyzed in terms of prede
cessor/successor relations, allowing to derive causal relationships from these relations,
if the definition of events was done properly. And knowing the causal relationships
between the events occurred is the basis for improving the system's behaviour in terms
of correctness and performance.

In order to augment event-driven monitoring in arbitrary parallel and distributed
systems the universal distributed hardware monitor ZM4 was developed and built. Its
main features are 1) the distributed master/slave-archtecture, 2) its precise global clock,
which allows to order all relevant events in the correct temporal order, and 3) its universal
adaptability, which was shown in the description of the interfaces currently available.

Finally the interface to MEMSY was described as the outcome of a fruitful coopera
tion between different groups within the MEMSY project. The very low overhead of the
software driver for hybrid monitoring and the small effort necessary for the hardware
part at the same time would not have been possible for us, if we did not have had access
to both the computer hardware and the source code of the software.

References

[1] A. Duda, G. Harms, Y. Haddad, and G. Bernard. Estimating Global Time in
Distributed Systems. In Distributed Systems, Proceedings of 7th Int. Con!, Berlin,
September 1987.

[2] F. Hofmann et al. MEMSY, A Modular Expandable Multiprocessor System. in
this volume.

[3] A. Grygier. Personal communication. March 1992.
[4] R. Hofmann. Gesicherte Zeitbezuge fur die Leistungsanalyse in parallelen und

verteilten Systemen. PhD thesis, Universitat Erlangen-Niimberg, 1993.
[5] R. Hofmann, R. Langer, andR. Speyerer. Ereignisgesteuertes Hybridmonitoringin

einer UNIX-Umgebung. Technical Report 9/89, Universitat Erlangen-Niimberg,
IMMD VII, Dezember 1989.

[6] R. Klar. Das aktuelle Schlagwort - Hardware/Software-Monitoring. Informatik
Spektrum,1985(8):37-40,1985.

www.manaraa.com

79

[7] R. KIar and N. Luttenberger. VLSI-based Monitoring of the Inter-Process
Communication of Multi-Microcomputer Systems with Shared Memory. In Pro
ceedings EUROMICRO '86, Microprocessing and Microprogramming, vol. 18.
no.1-5, pages 195-204, Venice, Italy, December 1986.

[8] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558-565, July 1978.

[9] B. Mohr. Ereignisbasierte Rechneranalysesysteme zur Bewertung paralLeler und
verteilter Systeme. PhD thesis, UniversiWEclangen-Niirnberg, 1992. VOl Verlag,
Fortschritt-Berichte, Reihe 10, Nr. 221.

[10] M. Siegle, R. Hofmann, and K.-H. Werner. Messungen an SUPRENUM.
Informatik-Spektrum, 14(6):356, Dezember 1991.

[11] W. Stukenbrock. Personal communication. April 1992.
[12] N. Wang. An Experimental Environment for a Performance Study of X Window

Systems. Technical Report 1/92, UniversiW Eclangen-Niirnberg, IMMD VII,
Januar 1992.

www.manaraa.com

Graph Models for Performance Evaluation
of Parallel Programs

Franz Hartleb

University of Erlangen-NUrnberg
Martensstra6e 3, 0-8520 Erlangen, Gennany

Abstract. For parallelizing an algorithm and for mapping a given
program onto a parallel or distributed system there are generally
many possibilities. Perfonnance models can help to predict which
implementation and which mapping is the best for a given algorithm
and for a given computer configuration. Stochastic graph modeling is
an appropriate method, since the execution order of tasks, their runtime
distribution, and branching probabilities are represented.

In this paper a survey of the modeling possibilities and the analysis
techniques implemented in our tool PEPP is presented. The analysis
techniques include a new approximation method and powerful bounding
methods for the mean runtime.

1 Introduction

In order to minimize the time for solving given problems the execution time
of different algorithms and implementation strategies have to be evaluated. As
implementing these different versions is too costly or even impossible if the desired
hardware is not available, predicting the runtime with a model is an appropriate
method.

As the runtime of a user program nonnally depends on the input values and
on the mostly unknown duration of library and system functions it is not easy to
predict it, even if a program is running on a monoprocessor system. In parallel
systems where processes communicate with each other and share resources there are
additional factors that have an influence on the runtime, e.g. race conditions, mutual
waiting of processes, or access conflicts on interconnection networks. Therefore,
modeling the behavior of parallel programs in order to predict their runtime can be
very complicated.

Graph models have been used extensively in order to model and to analyze the
behavior of parallel programs [12, 11 J. Experience showed that realistic models often
consist of hundreds of nodes. In this case the exact evaluation methods fail because of
too high computation times. Two ways of overcoming this are approximate methods
or methods to obtain lower and upper bounds of the mean runtime which need much
less computation time.

If one knows the runtimes of the essential parts of the parallel program it is
possible to use this knowledge for predicting the perfonnance of not yet implemented

www.manaraa.com

81

alternatives. This is done for analyzing open problems, such as different synchroniza
tion methods or interconnection networks, based on numerical distribution functions.
Integrating such measurement results and models for performance prediction allows
us to increase the accuracy of the predicted runtime.

Additionally, the analysis based on numerical functions instead of parametric
functions has two essential advantages. First it is much more efficient and second
modeling the tasks' runtime is not restricted to a particular type of distribution
functions like exponential or phase type distribution functions.

This paper is part of an effort to develop a set of tools PEPP (performance
Evaluation of Parallel Programs) for evaluating the performance of parallel programs.
All tools are based on graph models. PEPP is used for automatic instrumentation of
C-programs [4] and to predict the runtime distribution, the mean runtime, or bounds
for the mean runtime of parallel programs. In section 2 we define the stochastic graph
model, the node types, and the runtime distributions used in PEPP. A survey of the
analysis techniques is given in section 3.

2 Stochastic Graph Models

A parallel program is modeled by an acyclic, directed, stochastic graph G = (V, E, T..)
which consists of a set of nodes V, a set of directed edges E C V x V (arcs), and
a vector of random variables ';[. Each task or module ti of the parallel program is
modeled by one node Vi and the corresponding random variable 11 which describes
the runtime behavior of task ti. The tasks' runtimes are assumed to be independent
random variables. The dependency between tasks is modeled by arcs. An arc from
node Vi to node Vi means that task tj can start execution only if the execution of
task tj is finished. In the following section, we also use the set of predecessor nodes
p(Vi) and the set of successor nodes s(Vi) of node Vi. If p(Vi) = 0, then Vi is called
a start node. Vi is called an end node, if S(Vi) = 0. The levell(vi) of node Vi is
defined as the longest path from a start node to node Vi:

{
0 if p(Vi) = 0

I(Vi) = max l(vj)+1 else
VjEp(Vi)

(I)

2.1 Node Types in PEPP

In order to make modeling and model evaluation more efficient in PEPP, we
define four node types:

An elementary node represents one task ti of the parallel program with service
time distribution Fj(t).
The execution of n identical tasks on n processors in parallel is modeled by a
parallel node. All the n tasks are assumed to have the same runtime distribution
Fi(t).
Iterations and loops are modeled by cyclic nodes or hierarchical loop nodes.
A cyclic node is characterized by the runtime distribution of the body of the

www.manaraa.com

82

itemtion or loop and the probabilities Pt which are the probabilities that the
body is executed again after the k-th itemtion. The body of a hierarchical loop
node may be described by any PEPP graph. This allows us to model cycles and
the graph remains acyclic.

• A hierarchical ~ contains an arbitrary graph model consisting of elementary,
pamllel, cyclic, and hierarchical nodes. Any graph model can be included in a
higher order graph by this node type.

2.2 Runtime Distributions

For the tasks' runtime distribution F(t) many pammetric distributions and
numerical distributions can be used in PEPP. The runtime distribution may be

• deterministic F(t) = {O if t < d
1 ~lse

exponential F(t) = 1 - e- t
N k,,-1 j

Bmnching Eriang F(t) = 1 - I: Pne->."t I: (>.~~)
n::l ;::0 J.

one deterministic and one exponential phase F(t) = 1 - e->.(t-d)

numerically given

The deterministic, the exponential, and the Bmnching Eriang distribution are
well known and often used in performance models. In many cases the approximation
of the real runtime behavior with deterministic or exponential distributions is not
appropriate and the approximation with Bmnching Eriang distributions often leads to
a very high number of phases which makes the model intractable.

In order to avoid the problems of inappropriateness and intractability we
developed two approaches for describing runtime distributions.

Approximating the runtime with one deterministically and one exponentially
distributed phase allows us to adapt the first and the second moment of the runtime
and we get only two phases for one node.

In the second approach we describe any pammetric or measured distribution
function by its numerical representation (figure 1). A numerical density function of
an arbitrary density function f(t) is defined as a topel (D, N, fo, 11, ... , fI) [5] with
displacement D, order N. and

D+(2i+1)2 N - 1 00

Ii = J f(t) dtj h= J /(t) dt
o D+(2i-l)2 N - 1 D+(2I-l)2N - 1

(2)
The width of the discrete steps is defined by the unit b and order N. To make the
order of different densities adaptable, we always choose D mod 2N = O. This is
important for model analysis. The numerical density is called (~xact, if

D_2N- 1 00 J /(t)dt~(J f(t)dt ~ ((3)

o D+(2/+1)2 N - 1

This definition keeps the number of intervals small. In our implementation (is 10-6 •

www.manaraa.com

83

1ft)

I)

o

Fig. 1. Continuous density function and the corresponding numerical function

3 Model Analysis

The analysis method depends heavily on the structure of a given graph. In order to
classify the models in series-parallel and non-series-parallel graphs we define two
reduction operators:

serial reduction: This operator can be applied on two nodes Vi and Vj, if
S(Vi) = {Vj} and p(Vj) = {Vi}' By the serial reduction operator the two nodes
Vi and Vj are replaced in the graph model by one node V. r with p(v.r) = P(Vi),
s(v.r) = s(Vj), and

t

F.r(t) = J Fi(r)!i(t - r)dr (4)

o

parallel reduction: Two nodes Vi and Vj can be reduced to one node vpro if
p(v;) = p(Vj) and s(v.) = s(Vj). The two nodes are replaced by one node vpr
with p(vpr) = P(Vi), s(vpr) = S(Vi), and Fpr(t) = Fi(t)Fj(t).

A graph G is called a series-parallel graph if G can be reduced to one node
by the operators serial reduction and parallel reduction. All other graphs are called
non-series-parallel graphs.

Obviously, if we have a series-parallel graph, we are able to obtain the runtime
distribution of the modeled parallel program by reducing the graph to one node V,p,
The random variable T.p corresponding to v.p describes the runtime behavior, and
the mean runtime as well as higher moments can be obtained. This technique was
used in [7, 9, 8] and [2] to analyze series-parallel graphs where the tasks' runtime
distributions are modeled by exponential polynomials. However, applying this method
the number of parameters grows so fast that it can be used only for small graphs.
We cope with this problem by transforming the parametric functions to numerical
functions and applying the reduction operators to the numerical functions [5]. This
allows us to evaluate series-parallel graphs of nearly arbitrary size.

www.manaraa.com

84

The exact analysis of non-series-parallel graphs is very costly, even for the
small graphs. In [6] a method is introduced to compute the runtime distribution
of non-series-parallel structured graphs in which the tasks' runtimes are described
by polynomial functions. If the tasks' runtime distributions are given by General
Erlang functions, we can use the well known transient state space method. As the
number of states grows exponentially with the number of Erlang phases, this method
is not applicable in general. We therefore propose to reduce the number of states
by approximating the runtime distribution of each task with one deterministically
and one exponentially distributed phase. The mean runtime of a graph consisting
of deterministically and exponentially distributed phases can be obtained with the
approximate state space method. This analysis is done in three steps:

The runtime distribution of each node is approximated, depending on the variance
of the node, by one deterministically and one exponentially distributed phase or
by a two-phase hyperexponential distribution.
Serial reduction by adding the expected runtime and the runtime variance of
serial connected nodes.
The remaining graph, consisting of deterministically and/or exponentially dis
tributed phases is analyzed by an approximate state space method described in
[10].

Applying this method, the computation costs for analyzing graph models can be
reduced by a factor of 102 and more if the tasks' runtime variance is large.
Nevertheless, when modeling programs with a degree of parallelism larger than 10,
this method may also fail due to the number of states in the state space.

An approximate method for analyzing regularly structured non-series-parallel
graphs is described in [2].

If all these methods fail we apply methods for bounding the expected runtime.
Using only the first moment and the variance of the tasks' runtime, bounds for the
mean runtime of the whole program are obtained in [1]. Lower and upper bounds are
also obtained in [13] where the nodes' runtimes are assumed to be independent and
identically distributed of type NBUE. The mean service time of the critical path is
used as a lower bound. This does not yield good results for high parallelism because
only the first moments of the runtime distributions and no parallelism are considered.
The upper bound is obtained by replacing the tasks' runtime distribution functions
by exponential distribution functions with the same first moment and building the
product of the distributions of all paths from a start node to an end node. Again only
the first moments are considered and therefore the bounds are poor in general.

We use the whole information contained in the tasks' runtime distribution to
obtain lower and upper bounds for the mean runtime of parallel programs. The three
methods implemented in PEPP are based on the same prinCiple. To get an upper
bound of the mean runtime we add nodes or arcs to a given non-series-parallel graph
in order to make it series-parallel reducible. The mean runtime of the remaining
graph is an upper bound. Removing nodes or arcs from the original graph leads to
a lower bound of the mean runtime. A detailed description of the different methods
and a comparison is given in [3].

www.manaraa.com

85

Both, graph construction and graph analysis can be done hierarchically. Choosing
a hierarchical evaluation method means that the subgraphs of level i-I are analyzed
and the distribution functions or the mean runtimes are inserted into the graph of
level i. Applying the approximate state space method each subgraph is replaced by
one deterministically distributed phase and we obtain a lower bound for the mean
runtime. With the series-parallel-reduction method each subgraph is replaced by a
lower or an upper bound inserting the best bounds which are obtained by the different
methods. Therefore, we use the advantages of the different methods to get the best
bounds for the mean runtime. If a given graph already has a series-parallel structure,
the bounding methods always lead to exact results.

4 Conclusions and Prospects

This paper gives a survey of modeling possibilities and analysis techniques imple
mented in the analysis tool PEPP. The approximate state space analysis allows us to
obtain very accurate results for the mean runtime of graphs with a non-series-parallel
structure. The series-parallel reduction based on numerical distribution functions leads
to the runtime distribution of the modeled program in a very efficient way. Applying
this method to non-series-parallel graphs, we get lower and upper bounds for the
mean runtime and the runtime variance.

For further research it would be of interest to combine the advantages of the
different bounding strategies in one graph level, insertion of arcs and insertion of
nodes, in order to get better bounds in less computation time.

Acknowledgements

The author would like to thank Dr. R. Klar for reading an earlier draft of this
paper and for many valuable discussions.

References

1. L.P. Devroye. Inequalities for the Completion Times of Stochastic PERT
Networks., Math. Oper. Res., 4:441-447, 1980.

2. G. Fleischmann. Performance Evaluation of Parallel Programs for MIMD
Architectures: Modeling and Analyses (in German). Dissertation, Universit11t
Erlangen-Nfimberg, 1990.

3. F. Hartleb and V. Mertsiotakis. Bounds for the Mean Runtime of Parallel
Programs. In R. Pooley and J. Hillston, editors, Sixth International Conference
on Modelling Techniques and Toolsfor Computer Performance Evaluation, pages
197-210, Edinburgh, 1992.

4. R. Klar, A. Quick, and F. Sotz. Tools for a Model-illiven Instrumentation for
Monitoring. In G. Balbo, editor, Proceedings of the 5th International Conference

www.manaraa.com

86

on Modelling Techniques and Toolsfor Computer Performance Evaluation, pages
165-180. Elsevier Science Publisher B.V., 1992.

5. W. KleinMer. Stochastic Analysis of Parallel Programs for Hierarchical
Multiprocessor Systems (in German). Dissertation, UniversiUit Erlangen-NUrnberg,
1982.

6. J.J. Martin. Distribution of the Time through a Directed, Acyclic Network.
Operations Research, 13(1):46-66, 1965.

7. R. Sahner. A Hybrid, Combinatorial Method of Solving Performance and
Reliability Models. PhD thesis, Dep. Comput. Sci., Duke Univ., 1986.

8. R. Sahner and K. Trivedi. Performance Analysis and Reliability Analysis Using
Directed Acyclic Graphs. IEEE Transactions on Software Engineering, SE-13(IO),
October 1987.

9. R. Sahner and K.S. Trivedi. SPADE: A Tool for Performance and Reliability
Evaluation. In N. Abu El Ata, editor, Modelling Techniques and Tools for
Performance Analysis '85, pages 147-163. Elsevier Science Publishers B.V.
(North Holland), 1986.

10. F. Sotz. A Method for Performance Prediction of Parallel Programs. In
H. Burkhart, editor, CONPAR 90-VAPP IV. Joint International Conference on
Vector and Parallel Processing. Proceedings, pages 98-107, ZUrich, Switzerland,
September 1990. Springer-Verlag, Berlin, LNCS 457.

11. F. S()tz and G. Werner. Load Modeling with Stochastic Graphs for Improving
Parallel Programs on Multiprocessors (in German). In 11. ITGIGI-Fachtagung
Architektur von Rechensystemen, MUnchen, 1990.

12. A. Thomasian and P.F. Bay. Analytic Queueing Network Models for Parallel
Processing of Task Systems. IEEE Transactions on Computers, C-35(12):1045-
1054, December 1986.

13. N. Yazici-Pekergin and l.-M. Vincent Stochastic Bounds on Execution Times
of Parallel Programs. IEEE Transactions on Software Engineering, 17(10):1005-
1012, October 1991.

www.manaraa.com

Load Management on Multiprocessor Systems

Thomas Ludwig

Technische U niversitiit Miinchen
Institut fiir Informatik

Arcisstr. 21, Postfach 202420
D-W8000 Miinchen 2

phone: +49-89-2105-2042 or -2382
email: ludwig@informatik.tu-muenchen.de

Abstract. This paper concentrates on load management methods for
multiprocessor systems with distributed memory. Most of the programs
running on these machines do not create new processes during runtime
and there is usually no sharing of nodes between multiple users. This
causes load movement by process migration to be indispensable. We im
plemented a testbed to find out which load parameters are significant for
deciding on a system rebalance. The testbed also allows the investigation
of other important aspects of load management schemes.

1 Introduction

During the last years much research has been devoted to the development of
multiprocessor systems. There are not only considerable advances in hardware
architecture but also in the design and implementation of software tools. Nev
ertheless, it is still easier to build a parallel machine than to use it efficiently.
Two major types of parallel computers are available now: multiprocessor systems
with shared memory and systems with distributed memory. Most of the prob
lems concerning programming and running programs efficiently do not exist for
shared memory systems due to the fact that these machines resemble monopro
cessor systems with multitasking facilities. This paper completely concentrates
on multiprocessors with distributed memory.

Using systems with distributed memory usually makes program development
and performance tuning of the programs very difficult. One severe problem is
the load imbalance between processing nodes that may appear during runtime.
Two approaches can be used to cope with this particular type of problem which
can sometimes reduce the performance of a parallel system to that of a single
monoprocessor:

A static approach manages the distribution of processes to the processors
before runtime (usually called mapping). In many cases this approach re
quires a priori knowledge about the behaviour ofthe program, i.e. execution
times of the processes or precedence relations between them.
If this a priori knowledge is not available, a dynamic approach is applied,
where the distribution of processes happens during runtime of the program.
This approach is referred to as load sharing or load balancing.

www.manaraa.com

88

As load sharing and load balancing are used for different types of approaches,
we will use the general term load management. From the operating system's
point of view, load management is a global resource scheduling problem, in
which the usage of the CPU, the communication network and the memory on
each node must be taken into consideration.

Many investigations have been undertaken in this field but the main prob
lems are not yet solved. However, there are many interesting simulation results
showing concepts for possible implementations.

2 Load Management Issues

For every load management system it is important to determine which perfor
mance values are to be optimized. Depending on the specific way of using the
machine, several aspects are important: In environments with more than one
user or several programs sharing the same set of processing nodes, load man
agement usually improves the mean response time of programs as well as the
mean variance of response times. Permanent creation of new processes makes
load management schemes easy to implement as its mechanism must only have
the capability to move new processes to nodes with low load. Single user/single
program environments which are typical for multiprocessor systems add some re
strictions to this concept. Load management must be able to reduce the response
time of a single program even if this program does not create new processes dur
ing runtime. This requires mechanisms for moving running processes between
nodes.

Most of the research is oriented towards this first aspect of load manage
ment and concentrates mainly on efficiency improvements in distributed sys
tems. Nevertheless, many concepts are also applicable to multiprocessor systems
with single user/single program environments. We will therefore first give a short
overview of existing approaches and classification criteria for load management
schemes (see also [9, 12]).

At first, we should distinguish between load sharing and load balancing.
Although there is no common agreement to separate these two terms, we can
define load sharing as trying to avoid idle-times on any processor in the system
while processes on other nodes are waiting to be served. Load balancing, however,
tends to balance the load in the system according to a given criterion (see [7],
[10]).

Also, the notions of static load management and dynamic load management
are often confused. Following [3] and [5] we call the management static if it
redistributes load during runtime of the program without any knowledge of the
current system state. Consequently, dynamic management means taking into
consideration load parameters of the system and of nodes. In the following we
will only investigate dynamic load management schemes.

Management decisions have to be taken by a decision unit which represents
the intelligence of the system. Two important parameters have to be specified
and tuned:

www.manaraa.com

89

1. How many decision units are present in the multiprocessor system and how
are they mapped onto the processing nodes?

2. How much knowledge about the system state must each unit have to make
clever load management decisions?

Many combinations of possible concepts have been studied using numerical
analysis and simulations but there seems to be no final answer to these questions.

There are three possible solutions to the placement problem of the decision
units: local, clustered and centralized location. Centralized components have the
advantage of having knowledge about the whole system. This makes manage
ment decisions more efficient and allows quick reactions to changing load char
acteristics in different parts of the system. On the other hand, having central
components is a contradiction to the architectural principles of systems with
distributed resources because they usually cause loss of efficiency. With local
components the scalability of the computer system would not be influenced by
the load management units. However, in this case, the redistribution of load is
performed locally so that a global balance can only be reached slowly. Clustered
methods try to find a tradeoff between these two principles. Most of the inves
tigations deal with local methods, for example [6], [11], [13], and [15]. There
are also some results which show the possible benefits of both approaches under
similar conditions (see [16] and [17]).

The problem of the amount of information which is necessary for decision
making has two aspects. First, how many load parameters should be measured
on each node? Simple methods work only with idle-time or number of pro
cesses, whereas more sophisticated methods also use communication measures
and parameters of individual processes. Secondly, what overview of the system
should the decision unit have, i.e. from how many other nodes should it have
load information? Possible answers range from only local knowledge to global
knowledge. One would expect that more information should yield better deci
sions. But Casavant/Kuhl [4] found that a higher amount of information even
results in lower efficiency because of the additional time needed to collect all
the information. Concerning the choice of the parameters no investigations have
been undertaken and the parameters are often chosen randomly. Ferrari/Zhou
[7] claim to analyse the influence of varying load parameters carefully and to
use mean values of different queue lengths of the operating system. As this is
a crucial point for the efficiency of every load management algorithm our work
concentrates on the question which parameters are relevant for decision making.

Before we describe our approach in detail we will first take a brief look at
mechanisms for moving load from one node to another.

In existing load management methods two types of objects for load movement
can be identified: data structures and processes. Migration of data segments is
directly integrated into the application program itself as it can not be handled
without detailed knowledge about the interaction of data and program. In many
cases this mechanism yields very good performance values, but it exhibits a
significant lack of portability. Thus, with every new program the mechanism must
be implemented again. Only integration of the mechanism into the operation

www.manaraa.com

90

system will lead to a load management system which is invisible to the user and
independent of his style of writing programs.

The common level of abstraction at which object movement appears to be
efficient is the process level. Movement of smaller units of an application pro
gram, e.g. procedures or even statements, will not result in performance gains as
the transfer of these units between nodes needs too much time compared to the
execution time of the units. Modern operating systems for parallel computers
with distributed memory, for example Mach and Chorus already provide mecha
nisms for moving processes (or their corresponding constructions like actors etc.)
and thus for the integration of load management schemes (an overview of these
systems can be found in [8] and [14]).

The following section describes our approach of a load management system
which uses migration of running processes as a mechanism for balancing the
load.

3 A Load Management Testbed

Nearly all load management methods follow the principle of a control loop (see
Fig. 1). The system to be controlled is the parallel computer together with its
operating system and the running application program. A measurement unit
measures the current state of the system by monitoring the load at its resources
(processor, communication network, memory). These values are compared by an
evaluation unit which has to determine whether process migration is necessary.
If so it sends a command to the migration unit to start load migration.

The following problems are inherent to control loops and must therefore be
taken into account by load management methods:

How can the reaction time of the control loop be optimized?
How can overreactions be minimized?
How can oscillating regulations be prevented?

The answer to these questions lies in the intelligence of the decision unit.
Only a sound tuning of all parameters that influence the migration of processes
will lead to a management method which can handle all crucial load situations.

From the logical structure of the load management process we can directly
derive a component structure of an implementation. At least three components
must be developed: a load measurement unit, a load evaluation unit and a mi
gration unit. The various options with regard to placement of these units will
be discussed later. We will first have a closer look at the components.

3.1 The Load Measurement Unit

The measurement unit is responsible for collecting load information. It receives
commands from the load evaluation units, initiates and deactivates measure
ments and returns the results back to these units. Measures relevant for load

www.manaraa.com

91

Hardware / Operating System / Application Program(s)

Load Evaluation Unites)

Fig. 1. Control loop of the load balancer testbed

management are the usage of each individual resource: CPU, communication
network, and memory. A list of load parameters that can be measured by this
unit is given in Table 1.

The measurement unit is integrated into the operating system kernel and
acts as a monitoring system (see [2]). In our testbed the measurement unit is
implemented in software but hardware solutions are also possible. The influence
of the additional component to the running program is rather small: most of our
software based measurements do not slow down the application by more than
1 %. A reason for this can be found in the methodology of gathering runtime in
formation without strongly influencing the measured object. All data is collected
via counters that are activated by hooks integrated into the operating system.

In a distributed system there must be one load measurement unit on each
node which is subject to the process of load management. In our testbed this
unit is implemented as a kernel process integrated into the operating system.

Table 1. Load parameters of the measurement unit

N ode measures Process measures
Processor idle time Time using CPU
Process ready queue length Time in process ready queue
Sending/receiving queue length Time in sending/receiving queue
Free memory Used memory
Amount of data sent/received Amount of data sent/received
Number of messages sent/received Number of messages sent/received

N umber of page faults

www.manaraa.com

92

3.2 The Load Evaluation Unit

The load evaluation unit is the "brain" of the load management system. It
receives performance values from the load measurement units, investigate the
necessity of load migration and controls the migration unit. Its complexity is
determined by the fact that it should be able to dynamically make appropriate
decisions based on performance values of the past.

Three decisions have to be made before a migration can take place in the
system:

1. Is there any load imbalance in the system, i.e. are there nodes with load
varying significantly from the nodes' mean load?

2. If so, which are the nodes that have high and low load respectively?
3. Which processes are the best candidates to be moved from nodes with high

load to nodes with low load?

Each decision is based on at least one load measure that is suitable for this
purpose. Different load measures have to be considered before a process migra
tion can be initiated. The evaluation of the existing load imbalance requires
parameters that reflect the load situations on nodes, i.e. number of processes,
idle-time on these nodes etc. Also, the decision unit must calculate some mean
values describing the system as a whole. In order to find nodes with extreme load
conditions we can use the same load parameters together with some information
about the communication load on the nodes. Finally, the last decision requires
process oriented data, e.g. like CPU-usage of individual processes, communica
tion with other processes in the system, and memory usage.

The crucial problem for all load management methods is the question which
parameters should be used and how they should be combined to reflect some
thing like load of a node or load of a process. In the literature we find ap
proaches that use only trivial parameters like the number of processes for all
decisions and also methods that incorporate many parameters [15]. The ap
proach of StankovicJSidhu uses a McCulloch Pitts neuron to calculate a single
value (from few up to a dozen and more load parameters) that can be compared
with some threshold to make binary decisions. Unfortunately, they did not inves
tigate which parameters are indispensable and which are useless. As this issue is
of utmost importance for the efficiency of load management our investigations
will concentrate on finding those load measures that are relevant for decision
making.

In order to be able to compare decentralized and centralized methods of
load management the load evaluation unit is implemented as a user process.
The number and localization of the load evaluation unites) can be defined via
specification files. They are loaded and started before the application processes
and can easily be deleted if the user desires another configuration.

3.3 The Migration Unit

The migration unit is activated by the evaluation unit and moves processes from
source to destination nodes. In our particular environment processes are not

www.manaraa.com

93

migrated as a whole but as a set of single pages [1].
With this mechanism a migration candidate is at first stopped at the source

node. Its process context and current code page are transferred to the desti
nation node. There the process can directly be handed over to the scheduling
mechanism. Once actived again, every page fault causes a transfer operation
from pages of its address space. The locations of these pages are known to the
kernel. If repeated migrations of the same process take place its pages may be
distributed over several former source nodes. This scheme distributes the time
necessary for migration over a longer period and thus avoids temporarily over
loading the communication network. The approach has several advantages over
the conventional approach where processes are migrated as one large block of
code:

- The idle time of the migration candidate is minimal. This is important for not
to disturbing the synchronization with other processes longer than absolutely
necessary.
The consistency problem is alleviated. As process migrations last only for a
short period of time, the number of asynchronous messages arriving during
this time interval is small. Thus bringing the system to a consistent state
after migration does not produce excessive delays.
In most cases only a part of the pages used by the process will have to be
moved. Moving them only on demand therefore reduces communication.
If a process is migrated more than once, it can collect its pages from all former
nodes. Again, this leads to a gain of efficiency compared to conventional
migration.

There is also a disadvantage of this method: the total amount of communi
cation necessary to migrate a process in parts may be higher than for a method
that migrates the process as a whole. This is caused by the startup time for
every page transfer communication. Only empirical studys will show whether
the advantages outweigh this overhead.

The migration component is integrated into the kernel of the operating sys
tem as it makes intensive use of datastructures describing processes and also
needs the highest privilege level to manipulate the processes.

3.4 The Hardware Platform for the Testbed

The load management testbed has been implemented on an Intel iPSCj2 hyper
cube multiprocessor system. Our system currently has 32 nodes with 4 MByte
main memory each. Its 80386 processor together with the communication net
work supports paging via communication links. The network provides virtually
full connectivity, thus, the distance between sender and receiver does not influ
ence the time necessary for communication and process migration.

As already mentioned, the load measurement component and the process
migration component have been integrated into Intel's operating system kernel
NXj2 whereas the load evaluation has been implemented as user processes to

www.manaraa.com

94

facilitate experimentation. Communication between components is performed
via ordinary send/receive-calls.

3.5 Issues to be Studied with the Testbed

The possibility to configure the testbed allows the comparison of different alter
natives concerning two important issues of load management: where should the
components be located in the distributed system and which combination of load
parameters is necessary to make good decisions?

We use a definition file for experimentation with the locations of the compo
nents. As measurement and migration components have to be located on each
node in the system we can only specify the location of the load evaluation units
and the number of nodes each load evaluation is responsible for. With a central
ized approach we have only one load evaluation unit in the whole system, whereas
with decentralized load management there may be an evaluation unit on each
node. The issue is to find a tradeoff between gaining a good system overview and
thus the ability to react quickly to any changes in load distribution and avoiding
centralized components in a distributed computing environment.

The impact of load measures on the migration decisions is of crucial impor
tance for the efficiency of load management. The parameters, taken into account,
their relative weighting, and the method of combining them into single load infor
mation values can be specified in a description file. This allows not only a rapid
comparison of different types of evaluation by the user but also by the machine
itself. Test programs can be run automatically with varying sets of parameters
to find combinations that yield optimal results

4 Results from Experimentation

It is obvious that the investigation of load management issues is not trivial
due to the high number of parameters that influence the performance of the
load management system. Parameters can be subdivided into two classes. The
first class covers application dependent parameters, e.g. number and size of run
ning processes and their interprocess communication structure. The second class
characterizes the behaviour of the load management system, e.g. its physical
distribution and decision making heuristics. Any sound analysis must cover a
representative set of parameters to ensure that the load management is suitable
for a given class of application programs.

At first we have to define the performance criteria of the load management
system. With our multiprocessor system (as with most of the currently available
multiprocessor systems) only space sharing and no time sharing mode is sup
ported for the users. Consequently, the task of the load management system is
to minimize the runtime of the individual programs. No multi user aspects like
fairness between users or maximal throughput have to be taken into considera
tion. This makes performace evaluation easier because we only have to compare
program runtimes with and without load management.

www.manaraa.com

95

4.1 Configuration of the Testbed

In our first set of experiments we tested only a small configuration for the load
management system. We chose a configuration of four nodes with only one load
evaluation unit managing all of them. This centralized approach can also be a
starting point for a clustered configuration, where we have several load evaluation
units each managing a small number of nodes.

For the heuristics for decision making we compared four different types.
Type 1 bases its decisions only on the measurement of the idle times of the
nodes, whereas type 2 takes only the lengths of the ready queues into consider
ation. Type 3 is a combination of both type 1 and type 2. Finally, type 4 also
evaluates the lengths of the receive message queues. The results of type 4 will
not be discussed in this paper because it did not improve the performance of
types 1-3.

For each type we tested three different threshold values to trigger the process
migration. The proper selection of threshold values is important for the perfor
mance of the system. Thresholds chosen too high keep the system too long in an
unbalanced state, whereas low values lead to instabilities and increasing numbers
of process migrations even for almost well balanced systems.

The selection of an appropriate migration candidate was not parametrized in
our investigations. We chose a heuristic that takes the CPU-time of the processes
and their time in the ready queue for decision making.

4.2 Selection of Test Programs

The load management system was not tested with real programs because their
load imbalance can hardly be controlled. Instead we took one application pro
gram (calculation of Mandelbrot sets) and modified it in order to meet our
requirements.

At first we want to distinguish two types of applications: process systems
with and without communication. With the second type, where processes run
independently, load imbalance occurs only in the final phase of the program
execution. This is due to the fact, that some nodes did already finish their work,
i.e. their processes, while others are still active. As long as there are at least
as many processes as nodes in the system the load can be redistributed by the
load management system. This is of course the easiest situation for our system.
For the first type we assume that the processes perform a global synchronization
from time to time. Load imbalance appears before each synchronization on those
nodes where all processes already reached their synchronization operation and
are now in a waiting state. This situation is typical for many real applications,
especially for those with iteration algorithms. Of course this behaviour makes
it more difficult for the load management system to yield good performance. In
order to cover a representative set of programs we varied the synchronization
frequencies from one every ten seconds up to one every half a second.

Our test applications were composed of 12 and 16 processes respectively.
Each of them calculates one part of a specified Mandelbrot set. Because of the

www.manaraa.com

96

special nature of the solution algorithm the runtime of each process can not
be determined in advance and all process runtimes are different. This fact can
be used to simulate different degrees of load imbalance and to evaluate the
corresponding performance of the load management system.

The simplest program version has independent processes. Synchronized ver
sions of this application where generated by repeated synchronous calculations
of smaller Mandelbrot sets or by a global synchronization after the calculation
of each line of the processes' subsets.

We started with an initially equal distribution of the processes, where each
node receives 3 or 4 processes. Without load management we determine the op
timal mapping (yielding the shortest runtime) and the worst mapping (yielding
the longest runtime). Note, that there are even worse mappings when the initial
distribution may also be unequal. In addition we select seven more mappings
with different runtimes in order to have a suitable distribution of test cases.
These nine mappings resemble programs with load imbalances varying from al
most zero up to a degree that nearly doubles the runtime of the program.

For each mapping we measure the program runtime with activated load man
agement and compare it to the runtime without load management. The combi
nation of all load management system configurations and all different program
types leads to a set of almost 3.000 experiments. In this paper we only discuss a
small part of the results. However, they are significant for the results obtained
by a statistical analysis of the complete set of experiments.

4.3 Discussion of Results

Figure 2 shows part of the results in a very condensed form. The first plot shows
results from a program system consisting of 12 processes. It calculates a Mandel
brot set of 400x400 points. The second plot represents a synchronous program
version where 12 processes calculate the same Mandelbrot set (of size 100 x 100
points) ten times and perform a global synchronization after each calculation.

At first, let us have a look at the meaning of the various lines and symbols
in the plots. Both plots show the runtimes in seconds for the nine different
mappings. The solid horizontal lines represent the individual runtimes of the
programs without load management system. In plot a) they vary from 90 seconds
to 168 seconds, in plot b) from 84 seconds to 148 seconds. The runtimes of the
programs with activated load management system are given by the centers ofthe
triangles and rectangles. Each mapping has nine runtimes with load management
corresponding to the different configurations of the system. Threshold values are
indicated by a graphical symbol: normal triangles represent low threshold values,
rectangles medium thresholds, and reverse triangles high thresholds. Decision
heuristics are represented by the position of the graphical symbols in the plot:
the first triple of each mapping (normal triangle, rectangle, reverse triangle)
is produced by a heuristic of type I, where only idle time is measured. The
second triple corresponds to type 3 combining idle time and ready queue length.
Finally, the last triple reflects type 2, where only ready queue lengths are taken

www.manaraa.com

97

into consideration. Dashed lines show for each mapping the mean value of the
runtimes with activated load management system.

12

10

80

12

10

80

12 processes / 400x400 points

best
5

[mapping]

12 processes / 100x100 points / 10 synchronizations

3

V high threshold ready queue length

a)

worst

b)

worst best I [I [I [I [mapping]

<> medium threshold it + rql -- without load management
/:. low threshold idle time - - - - - with load management
individual runtimes with load management mean runtime

Fig. 2. Runtimes of test programs (with and without global synchronizations) without
load management and with activated load management

Let us now discuss the conclusions that can be drawn from the results of
these experiments. Several aspects have to be considered as we are interested in
the overall efficiency of the system as well as in questions of how to tune the
various parameters.

www.manaraa.com

98

First of all and most important we can see that the load management system
balances most of the unbalanced load situations. With unsynchronized processes
there is almost always a gain of performance when load management is activated.
However, synchronized processes are more difficult to balance. As a consequence,
the best two mappings have shorter runtimes with deactivated load management.

In the real world optimal mappings can usually not be determined because of
the computing complexity or the fact that load imbalances occur during runtime.
For this situation our results from Fig. 2 and other measurements indicate that
the load management system will improve the runtime of most of the application
programs. Nevertheless, there will also be a certain percentage of programs with
out internal load imbalance that will suffer from a prolongation of completion
time.

Both plots show that the mean values of runtime with load management
(given by dashed lines) form an almost horizontal line. This line is about 10 %
higher than the value of the best mapping. Thus, the load management system
is capable of balancing the load and of achieving a degree of quality which is
independent of the chosen mapping. The height of this line is of course deter
mined by the inherent overhead of the load management system itself and by the
quality of decision making. Note, that the height will be even lower, if we elim
inate all disadvantageous threshold/heuristic combinations. Not only the mean
runtime is reduced but also the variance of runtimes for all mappings. For real
applications this means that program completion times get more predictable and
that the importance to determine clever initial mappings diminishes.

Comparing unsynchronized and synchronized process systems we find that
efficiency for the latter is worse. This is not surprising because the situation is
more complicated as idle times occur frequently and with a smaller extend. From
further results we can see that the frequency of synchronization has almost no
influence on efficiency. For synchronized process systems the point of intersection
between the horizontal line of mean runtimes with activated load management
and the curve for unmanaged programs is farther to the right on the x-axis.
Thus, the percentage of mappings that can not be improved by load management
increases. One of our future investigations will concentrate on how to minimize
the time overhead added to application programs in these situations.

An additional problem has been noticed in the two plots. For synchronized
process systems the difference between best and worst unbalanced mapping is
smaller. As a consequence, the overall efficiency of the load management system
is lower because it adds an almost constant overhead to all mappings.

Let us now have a more detailed look at the runtime differences caused by
the three load evaluation heuristics. In general (considering all measured results)
we can say that idle time as a single load measure does not yield optimal results.
Instead we need at least a combination of idle time and ready queue length.
Comparing all synchronized and unsynchronized programs we found that idle
time is inappropriate if the number of synchronizations is low. Plot a) in Fig. 2
shows, that mean idle time yields the lowest efficiency. This is a surprising result,
because with single blocks of idle time at the end of a program one would expect

www.manaraa.com

99

idle time to be the most adequate measure. However, using ready queue length
instead leads to a better balanced system during the complete runtime. Process
migrations even appear if there is no idle time at all but only a difference in
ready queue length. At first, these migrations produce only additional costs, but
finally result in shorter completion times. They are preventive in the sense that
they already take place even if no loss of efficiency (i.e. idle times) occured.

Finally, the threshold value influences the efficiency of the load management
system. Regarding Fig. 2 we can see that in many cases low thresholds result in
longer runtimes. There are two reasons for this. First, lower thresholds produce
a higher number of migrations and thus more overhead. If this overhead is not
outweighed by a gain of performance completion times will increase. However,
this effect alone can not explain the differences between high and low thresholds.
The second reason is the instability caused by low thresholds. Migrations are
initiated based on minor load differences on the nodes. This leads to a higher
percentage of wrong migration decisions as small load fluctuations are often not
significant for the long term behaviour of the process system. Considering all
measured experiments we must conclude that medium to high thresholds yield
optimal runtimes.

There is an additional result which can not be concluded from the two plots.
If we increase granularity (i.e. take 16 processes instead of 12) the difference
between best and worst mapping decreases because of the better inherent load
balance of the process system. As already mentioned, these situations are prob
lematic for the load management system. However the results are similar to
that shown in Fig. 2 (only few mappings have better performance without load
management). The reason for this can also be found in the granularity. Actu
ally, load imbalances are smaller, making it difficult to manage them. However,
this is compensated by a higher number of potential migration candidates. This
facilitates an efficient fine tuning of the load situation. Considering all our re
sults we found that granularity has no influence on the performance of the load
management system.

5 Conclusion and Future Work

In this paper we investigated load management issues on multiprocessor systems
with distributed memory. The performance criteria of the load management
system is the minimization of the runtimes of the individual user programs.
We implemented a testbed to investigate the question of decision making in the
control loop of the load management system. Load migration is implemented via
preemptive process migration where the pages of the processes' address spaces
are only transferred on demand.

About 3.000 experiments with varying process system types and decision
making heuristics were carried out. We found that the load management system
is able to significantly improve most of the load situations that may appear in
real programs. Simple load measures like idle time are not appropriate for deci
sion making. Instead combinations of idle time and ready queue length should

www.manaraa.com

100

be used. The influence of communication based load measures is still an open
question.

In our future work we will concentrate on comparing different physical config
urations of the load management system. Especially scalability and performance
matters will be investigated with respect to decentralized approaches with more
that one load evaluation unit.

References

1. T. Bemmerl, A. Bode, O. Hansen, T. Ludwig A Testbed for Dynamic Load Balanc
ing on Distributed Memory Multiprocessors, Esprit Project 2701 Parallel Universal
Message-Passing Architecture, Working Paper 14, Work Package 4.5, Tech. Uni
versity of Munich, August 1990.

2. T. Hemmerl, R. Lindhof, T. Treml The Distributed Monitor System of TOPSYS,
Proceedings of the CONPAR 90 - VAPP IV Joint International Conference, Zurich,
Switzerland, Sep. 1990, Lecture Notes in Computer Science, Vol. 457, pp. 756-765.

3. F. Bonomi, A. Kumar Adaptive Optimal Load Balancing in a Heterogeneous Mul
tiserver System with a Central Job Scheduler, Proceedings of the Eighth Interna
tional Conference on Distributed Computing Systems, San Jose, California, June
13-17,1988, Computer Society Press, Washington, D.C., 1988, pp. 500-508

4. T.L. Casavant, J.G. Kuhl Analysis of Three Dynamic Distributed Load-Balancing
Strategies with Varying Global Information Requirements, Proceedings of the In
ternational Conference on Distributed Computing Systems (Computer Society of
the IEEE), 1987, pp. 185-192

5. P. Dikshit, S.K. Tripathi, P. Jalote SAHAYOG: A Test Bed for Evaluating Dynamic
Load-Sharing Policies, Software - Practise and Experience, Vol. 19 (5), May 1989,
pp.411-435

6. D. Ferguson, Y. Yemini, C. Nicolaou Microeconomic Algorithms for Load Bal
ancing in Distributed Computer Systems, Proceedings of the Eighth International
Conference on Distributed Computing Systems, San Jose, California, June 13-17,
1988, Computer Society Press, Washington, D.C., 1988, pp. 491-499

7. D. Ferrari, S. Zhou A Load Index for Dynamic Load Balancing, Proceedings of the
Sixth International Conference on Distributed Computing Systems, Cambridge,
Massachusetts, May 19-23, 1986, IEEE Computer Society Press, Washington,
D.C., 1986, pp. 684-690.

8. A. Goscinski Distributed Operating Systems - The Logical Design, Addison
Wesley: Sydney, 1991

9. O. Hansen, T. Ludwig, R. Milner, S. Baker Load Balancing Strategies, Esprit
Project 2701, Parallel Universal Message-Passing Architecture, Deliverable, Num
ber 4.5.1, Work Package 4.5, Tech. University Munich and RSRE, December 1990.

10. P. Krueger, M. Livny The Diverse Objectives of Distributed Scheduling Policies,
Proceedings of the Seventh International Conference on Distributed Computing
Systems, Berlin, West-Germany, September 21-25, 1987, ed. R. Popescu-Zeletin,
G. Le Lann, K.H. (Kane) Kim, Computer Society Press, Washington, D.C., 1987

11. F.C.H. Lin, R.M. Keller The Gradient Model Load Balancing Method IEEE Trans
actions on Software Engineering, Vol.SE-13, Nr.l, Jan 1987

12. T. Ludwig Automatische Lastverwaltung fiir Parallelrechner to appear in: B.I.
Wissenschaftsverlag: Heidelberg, 1993.

www.manaraa.com

101

13. W. Shu, L.V. Kale Dynamic Scheduling of Medium-Grained Processes on Multi
computers, Internal Report, Department of Computer Science, University ofIllinois

14. J.M. Smith A Survey of Process Migration, Operating Systems Review, Vol. 22,
Nr. 3, July 1988, pp. 28-40.

15. J.A. Stankovic, I.S. Sidhu An Adaptive Bidding Algorithm For Processes, Clusters
and Distributed Groups, Proceedings of the Fourth International Conference on
Distributed Computing Systems, San Francisco, California, May 14-18, 1984, IEEE
Computer Society Press, Silver Spring, 1984, pp. 49-59.

16. M. Willebeek-LeMair, A.P. Reeves Local vs. Global Strategies for Dynamic Load
Balancing, Proceedings of the 1990 International Conference on Parallel Process
ing, August 13-17, 1990, Vol. I Architecture, B.W. Wah (editor), The Pennsylvania
State University Press, University Park, PA, 1990, pp. 569-570.

17. S. Zhou A Trace-Driven Simulation Study of Dynamic Load Balancing, IEEE
Transactions on Software Engineering, Vo1.14, Nr.9, Sep.1988,pp. 1327-1341

www.manaraa.com

Randomized Shared Memory-Concept and
Efficiency of a Scalable Shared Memory Scheme

Hermann Hellwagner

Siemens AG . ZFE ST SN 21
P.O.Box 830953, W-8000 Munich 83

E-Mail: hermann@christine.zfe.siemens.de

Abstract. Our work explores the practical relevance of Randomized Shared
Memory (RSM), a theoretical concept that has been proven to enable an
(asymptotically) optimally efficient implementation of scalable and
universal shared memory in a distributed-memory parallel system. RSM
(address hashing) pseudo-randomly distributes global memory addresses
throughout the nodes' local memories. High memory access latencies are
masked through massive parallelism. This paper introduces the basic
principles and properties of RSM and analyzes its practical efficiency in
terms of constant factors through simulation studies, assuming a state-of
the-art parallel architecture. Bottlenecks in the architecture are pointed out,
and improvements are being made and their effects assessed quantitatively.
The results show that RSM efficiency is encouragingly high, even in a non
optimized architecture. We propose architectural features to support RSM
and conclude that RSM may indeed be a feasible shared-memory
implementation in future massively parallel computers.

1 Introduction

Within the class of parallel MIMD computers, systems with shared memory
are widely preferred over their distributed-memory counterparts. This is
due to more convenient software development (programming models) and
tool support (e.g. automatic parallelization, debugging, load balancing) fa
cilitated by the system-wide global memory.

Traditionally, most shared-memory parallel machines have been built
around a common bus and with physically common memory. Due to the use
of centralized resources, these systems do not scale beyond the range of tens
of processors at most. In the design of massively parallel computers, an at
tempt is currently being made to offer the convenience of a shared-memory
image while maintaining the superior scalability of distributed-memory
hardware.

Distributed Shared Memory (DSM) has emerged as the most promising ap
proach to achieve this goal [7, 13]. DSM systems typically employ some

www.manaraa.com

103

form of caching to reduce global memory access latencies and achieve ac
ceptable performance. Initially, most DSM schemes have been implemen
ted in software, extending conventional virtual memory management.

Recently however, a number of hardware-based DSM schemes have been
proposed, which are destined to be scalable into the range of at least hun
dreds of processors [3, 4, 6,10,12,15,16]. The key elements of these propo
sals are scalable cache coherence protocols, which usually are extensions of
conventional multiprocessor cache protocols. The approaches pursued in
these designs are manifold: weak coherency models, hierarchical or cluster
based configuratons, distributed directories, and/or cache-only memory ar
chitectures. Some of these systems are currently being built or already ope
rational. It will be interesting to see whether they succeed in providing tru
ly scalable shared memory.

In this paper, a radically different approach to scalable shared memory will
be explored. The approach is based upon recent work in theoretical compu
ter science which has disclosed ways how to implement provably scalable
and universally efficient DSM [17, 18]. The proposal is based upon global
memory randomization (address hashing), that is, pseudo-random distribu
tion of the global address space among the nodes' local memories. High me
mory access latencies are masked through massive parallelism. That is,
this scheme builds upon latency hiding rather than latency reduction. In
the following, the term Randomized Shared Memory (RSM) will be used to
denote this proposal for shared memory realization.

In the first place, one would intuitively anticipate very poor performance.
However, this scheme has been shown to optimally emulate (in an asymp
totic sense) shared memory in distributed-memory machines, provided that
software provides sufficient parallelism for effective latency hiding. RSM is
therefore a potentially significant proposal and worthwhile to be investiga
ted further.

This paper introduces the theoretical background and basic principles of
RSM and then analyzes its practical efficiency in terms of constant factors
through simulation studies, assuming a state-of-the-art parallel architec
ture. Inefficiencies of the architecture are pointed out, and improvements
are being made and their effects assessed quantitatively. Finally, we propo
se architectural features to support RSM and conclude that RSM may in
deed be a feasible shared-memory implementation in future massively par
allel computers.

2 Randomized Shared Memory

RSM was introduced in the theoretical literature in the framework of stu
dying emulations of an idealized shared-memory parallel computer, the

www.manaraa.com

104

Parallel Random Access Machine (PRAM), on realistic distributed-memory
hardware.

The PRAM is a theoretical machine which abstracts from any architectural
and hardware constraints. It offers a powerful, architecture-independent
programming model without imposing limitations on parallelism, and the
refore allows parallel computation to be studied per se. It has extensively
been used to develop and study (efficient) parallel algorithms, to devise
techniques for parallel algorithm design, and to develop a parallel comple
xity theory [5].

The PRAM model essentially consists of a (possibly infinite) number of pro
cessors, accessing and communicating via a global memory (possibly of infi
nite size). The processors operate in lock-step synchrony. In each step of the
computation, every processor performs a read-memory, compute, write
memory cycle. Memory accesses are of uniform cost and take unit time.
There is no notion of memory locality.

To make PRAM algorithms more readily applicable in practical problems
and machines, theoreticians devised methods to emulate the PRAM on (mo
dels of) real machines. A key element of these methods is shared memory
emulation in a distributed-memory system using memory randomization.

Fig. 1 illustrates the basic principle of memory randomization. The techni
que pseudo-randomly distributes global data and, at run time, global acces
ses to those data on a per-word basis throughout the system's memory mo
dules, i.e. the nodes' local memories. Data in RSM are neither cached (repli
cated) nor migrated. As a result, most of the memory accesses are directed
at remote memory units, which incurs high memory access latencies and
generates intense network traffic. For practical purposes, randomization
needs to be applied to global data only. Data that arE: private to a node can
be held in a conventionally addressed portion of the node's local memory.

The purpose of hashing is to spread out global addresses and accesses as
uniformly as possible across the memory units of the system, avoiding to
overload individual units even if the memory accesses are arbitrarily non
uniform. Similarly, memory request/reply traffic in the interconnection
network is randomized and the danger of hot spots or systematic blocking,
which may severely impair machine performance, is reduced.

From a practitioner's point of view, the RSM approach is counter-intuitive.
Since locality of reference cannot be exploited at all and high costs are asso
ciated with each memory access, one would intuitively anticipate very poor
performance. However, recent theoretical work by Valiant on optimal
PRAM emulation [17, 18] has rendered RSM potentially significant and
feasible for practical use. The following features make RSM an interesting
DSM implementation proposal:

www.manaraa.com

105

............................... ~------.- ,

Local

Interconnection network

Logical view: shared memory Physical situation: distributed memory

Fig. 1 RSM concept

~ When memory access latencies are adequately masked through massive
parallelism (see below), RSM is an optimally efficient DSM implementa
tion (in an asymptotic sense).

~ RSM scales with constant efficiency.
• RSM is universally efficient.

Valiant's m~jor contribution has been to propose hiding memory access la
tencies through a high degree of parallelism exhibited by application pro
grams (excess parallelism or parallel slackness). The idea is outlined in the
sequel. A more detailled description of this concept appears in [81. The ma
thematical treatment is given in [17]. The quantitive figures given below
hold for the emulation of an exclusive-read, exclusive-write (EREW)
PRAM. Results for other PRAM variants can be found in [17] as well.

Let p denote the number of processors of the real, distributed-memory ma
chine that is to emulate an EREW PRAM. The PRAM executes synchro
nously in steps, as described above; a step takes unit time. Assume that a
given PRAM algorithm utilizes v virtual PRAM processors. Given that
v=p·log p, the PRAM algorithm can be executed with optimal asymptotic
efficiency on the real machines as follows. (This is a lower bound, chosen
here for sake of presentation; the result holds for any v 2: p·log p.)

The v virtual PRAM processors are evenly mapped to processes on the p
physical processors. The PRAM shared memory is randomized throughout
the real system's local memories. Each PRAM step is emulated by a super
step on the real machine. In each superstep, each node of the real machine
executes log p processes concurrently. Whenever a process accesses global
memory and the access is directed at a remote memory (through the has
hing function), the requesting process is descheduled, and another process

www.manaraa.com

106

resumes execution. In other words, frequent process switching is employed
to hide the communications latencies involved in memory accesses.

All the processes together issue O(p·log p) memory requests in a single su
perstep, O(log p) per node. Valiant has shown that there exist networks,
e.g. hypercubes and butterfly topologies, which with very high probability
can route all those requests and, therefore, service all the memory accesses
in O(log p) time. Consequently, on each node of the real machine, the log p
processes (PRAM virtual processors) are executed (emulated) in O(logp)ti
me, which is optimal up to constant factors. At the end of each superstep,
all processes explicitly engage in barrier synchronization. Since global syn
chrony is established at a much coarser grain than in a PRAM, the term
bulk-synchronous parallelism (BSP) has been coined for this style of execu
tion.

In effect, Valiant's analysis shows that any program written in a high-level
shared-memory programming model can be emulated on the BSP model
and thus on a real, distributed-memory system with only a constant-factor
loss of efficiency C. The major prerequisite is that software provides suffi
ciently many processes (excess parallelism) for effective latency hiding.

It must be noted that fig. 1 gives a simplified picture of memory randomiza
tion. Only a single hash function is depicted which is assumed to yield both
a node address and the physical address within that node's local memory.
The theoretical analysis [17] requires two hashing steps and functions, glo
bal and local hashing. In addition, the hash functions must be universal, i.e.
generate a provably (approximately) even distribution of global memory lo
cations throughout the memory modules. Computing these functions invol
ves evaluating a polynomial of degree O(logp).

For practical purposes, however, a single, linear hash function is assumed
to be sufficient [1]. The universality property does no longer hold for such a
function, but its hardware implementation is cheaper and the address
translation is faster than for universal hashing. A linear hash function is
therefore assumed for the RSM evaluation reported in this paper.

3 RSM Performance Evaluation

The actual practical relevance of RSM is determined by the constant-factor
loss of efficiency C involved in the PRAM emulation. We have therefore as
sessed the practical efficiency ofRSM in a state-of-the-art parallel architec
ture. In this section, we briefly outline the approach taken for RSM perfor
mance evaluation. A detailled description is given in [8].

Trace-driven simulation has been used to assess RSM efficiency. The simu
lations encompass in full detail the global memory access and global syn-

www.manaraa.com

107

chronization behaviour of application processes and all resulting activities,
such as address translation (hashing), process scheduling, communications
(message passing), actual memory accesses, and barrier synchronization
events. All these operations are covered on a per-process basis. Fig. 2 illu
strates the activities on a node when a process reads a global variable sto
red in a remote memory module.

The simulator for RSM performance analysis is an extension of an existing
interconnection network simulator [9]. All the network properties, such as
throughput and latency, and dynamic effects, like contention and queue
ing, are captured in close detail in the RSM simulations. This is important
since RSM efficiency is, to a high degree, determined by network behaviour.

The architectural model is a distributed-memory parallel computer based
on the new generation of transputer components, the Inmos T9000 proces
sor and Cl04 routing switch [11]. On each node, there is a memory manage
ment unit, termed RSM Server, that implements the global memory ab
straction for its processor. The interconnect of the architecture was chosen
to be a multi-stage, Clos-type, four-fold replicated network performing
adaptive wormhole routing [9].

The T9000 transputer was regarded as particularly well-suited for RSM si
mulations because of its hardware support for rapid process scheduling and
communications. For example, process switching was initially assumed to
take IllS only (40 cycles on a 40 MHz T9000). To make global memory ma
nagement comparably fast, we modelled the RSM Server as a hardware
unit similar in performance to the T9000 communications coprocessor.
Fig. 2 exemplarily illustrates the functional and timing behaviour of the
RSM Server (and of other functional units). RSM Server functionality as
well as performance is specified in more detail in [8].

The RSM Servers collectively implement the common memory image on
the distributed-memory hardware, relieving the CPUs from controlling
global memory accesses. In our model, the RSM Servers are also responsi
ble for global synchronizations. Initially, only a simple message-based, cen
tralized, two-tier barrier scheme was implemented. It is obvious that such a
scheme is not scalable. Since synchronization performance was not a focus
of our investigations, it was initially regarded as sufficient for our purpo
ses.

The workloads driving the simulations are either application traces or syn
thetic reference patterns. The traces capture the global memory access and
synchronization behaviour of application kernels on a per-process basis.
The kernels have been written according to the BSP model, i.e. with excess
parallelism and in a superstep-wise fashion, and have been executed on
small transputer arrays (up to 17 nodes) with shared memory emulated in
software. The kernel routines fall into three classes:

www.manaraa.com

CPU

Process
scheduler

RSM
Server

Comm.
system

108

CPU --~II4---- CPU ---+l.I+-- CPU _
active • ~ waiting zdle

Execute process gread
i

Deschedule process

I preate&dispatch l
H&T requ. message;

I Set up comm. I Send msg.

H&T ... hash address and test if data local

Fig.2 Activities of a node's functional units on a global read operation (9 read)

• numerical kernels: dense and sparse dot products, matrix-vector multi
plication, matrix multiplication, matrix transpose, and ID complex FFT;

• low-level image processing operations: thresholding, lowpass filtering,
edge detection (Sobel), and simple growing and thinning operations;

• PRAM-specific routines: parallel prefix sum and list ranking.

The traces enable RSM performance figures to be obtained on the basis of
realistic global memory access and synchronization behaviour. Their draw
back is that they are confined to a fixed, small number of nodes.

The synthetic workloads are used for two purposes: to obtain RSM efficien
cy results for larger systems (Le. to address the issue of scalability), and to
more systematically investigate the impact of load characteristics (e.g. de
gree of excess parallelism) on RSM performance. To that end, the synthetic
load generator allows variations in a number of parameters, most notably
system size (number of nodes), excess parallelism (number of processes per
node), and the rate (frequency) of global reads or writes. The spatial distri
bution of global memory accesses does not produce systematic conflicts.
Synthetic loads will therefore yield best-case RSM performance figures.

The evaluation criteria for determining RSM efficiency are based upon con
sidering three classes of CPU activities; see fig. 2. A CPU is active when an
application process is currently executing. A CPU is waiting during global
address translation (hashing), local access to a global data item, and pro
cess (de)scheduling. As shown in fig. 2, the main constituent of CPU wai
tingtime is the process switching time (>90%). Finally, a CPU is idle when
no application process is available to be executed. All processes are inacti
ve, waiting for their global memory accesses or barrier synchronization re-

www.manaraa.com

109

quests to be serviced. Therefore, we differentiate between CPU memory idle
and sync idle times.

RSM efficiency is expressed by splitting the elapsed time (simulated pro
gram run time) up into four parts:

• average CPU active time and rate (percentage of elapsed time);
• average CPU waiting time and rate;
• average CPU memory idle time and rate;
• average CPU sync idle time and rate.

The first criterion enables the constant-factor loss of efficiency C to be defi
ned as

C: = 11 (average CPU active rate).

It is thus the most important measure of RSM efficiency. The latter three
criteria allow the major sources of inefficiencies to be identified and asses
sed quantitatively.

In an idealized machine (e.g., a PRAM) with ideal global memory, zero
time process switching and perfectly synchronous operation, the CPU s
would be fully active, yielding C= 1. C> 1 in a real system is caused by the
global memory emulation, process switching time, barrier synchronization
latencies, and potentially insufficient degree of excess parallelism. Notice
that a message-passing version of a given program or an implementation
on physically shared memory would also have some C> 1.

4 RSM Efficiency

In this section, the major results on RSM efficiency are reported. First, the
basic results that have already been described in [8] are summarized. They
allow an initial value of C to be determined and the major sources of ineffi
ciencies to be identified. In a further step, the effects of architectural impro
vements to mitigate these inefficiencies are investigated.

4.1 Basic Results

Fig. 3 summarizes representative initial results on RSM efficiency, which
are based on the architectural model as described in the previous section.
More results and the details on the traces and synthetic loads underlying
these simulations are given in [8].

The graphs indicate that RSM (more precisely, the specific RSM implemen
tation model described above) induces a typical CPU active rate (efficiency)
of 10% to 20%, which means that the constant-factor loss of efficiency Cis
in the range of 5 to 10.

www.manaraa.com

% of elapsed time

60 f-

40 f-

20 f-

Matrix
multo

r
Thresholding

(1 CR) (OCR)

110

r
Par. pre
fix sum

sync idle

memidle

waiting

active

List Synth. load
ranking (p=256)

Fig.3 Distribution of CPU time for sample loads

This is regarded as encouragingly high, since high global memory access
rates have been assumed for the simulations. For example, the matrix mul
tiplication program/trace has been assumed to issue a global memory ac
cess after every 15 local processor cycles (on an average). Various experi
ments indicate that the CPU efficiency is highly sensitive to the global ac
cess rate [8]. Thus, quite good CPU efficiency can be expected when global
requests occur at a coarser grain. Furthermore, the architectural model is
not optimized for RSM support. Several sources of inefficiencies can be
identified, either due to architectural bottlenecks or specific application
characteristics.

The results clearly show thatthe process switching time (although model
led to take 40 processor cycles only) is the major bottleneck in the emula
tion. For loads which do not have significant application-specific inefficien
cies, the processors spend most of their time (> 60%) waiting for address
translation and, most notably, process scheduling to take place. Reducing
process switching time must therefore be considered the single most impor
tant measure to support RSM. This issue is dealt with in subsection 4.3.

For the matrix multiplication trace, the CPU memory idle time accounts
for about 20% of the simulated run time. This is due to an insufficient de
gree of parallelism. For the specific global memory access rate chosen in
this simulation, the four processes per node (in a 17 -node parallel system)
cannot fully mask the ensuing memory latencies. It must be emphasized
that the CPU memory idle rate closely depends on the global memory ac
cess frequency. In other words, in a program or simulation with a lower ac-

www.manaraa.com

111

cess rate assumed, four processes may well suffice to satisfactorily hide the
latencies.

In contrast, the extremely high CPU memory idle rate of the thresholding
program is caused by the application performing a massively concurrent re
ad (CR) operation. Several thousand processes concurrently access a com
mon variable (the threshold value). This leads to massive congestion at the
memory module holding the variable and in the interconnection network
("hot spot" behaviour). The read accesses can only be serviced serially by
the responsible RSM Server. Despite the massive parallelism provided by
the program (400 processes per node), the CPUs run out of active processes
and become memory idle eventually. As a result, CPU efficiency becomes
poor. The CR operation is eliminated in the second version of this program,
leading to acceptable efficiency and negligible memory idle time.

For the parallel prefix operation, the CPU sync idle time is the dominant
constituent. This is due to global synchronizations occuring at a very high
frequency, with an average of less than one global memory access being
performed per process and superstep.

High CPU sync idle times also occur in larger systems, as shown by the
synthetic load example in fig. 3. A system of size p = 256 nodes, 16 processes
per node and more than 300.000 global memory accesses, but only 10 super
steps have been chosen for this simulation. Clearly, the centralized barrier
synchronization scheme implemented in the initial model seriously impairs
performance for larger systems and does not even scale into the range of
hundreds of processors. Improved barrier implementations and their effect
on performance and scalability are therefore investigated in subsection 4.2.

Experiments with varying degree of excess parallelism in synthetic loads
have also shown that, in larger systems, almost exactly log p processes per
node suffice to fully hide global memory latencies [8]. This closely corre
sponds to the theoretical results. Clearly, this one-to-one correspondence
holds for the specific architectural model and simulation parameters un
derlying these experiments only. Changing the assumptions would cause a
constant-factor increase or decrease of the required degree of excess paral
lelism.

In summary, the initial performance figures indicate that up to 20% effi
ciency of idealized shared memory can be attained in an RSM-based paral
lel architecture that is principally implementable with state-of-the-art
technology. This result holds in case sufficient parallelism is available to
mask memory latencies, and for high global memory access rates assumed.
Higher efficiency could be expected for global memory accesses occurring
less frequently. However, quite high global access rates must be expected
in fine-grained parallel shared-memory programs specifically written for
RSM-based systems.

www.manaraa.com

112

Two major architectural bottlenecks were identified, limiting or impairing
RSM performance and scalability: the process switching time and the
message-based, centralized barrier synchronization scheme. Improvements
of these two factors will therefore be investigated subsequently.

Apart from these two factors, the interconnection network becomes a seve
re bottleneck in case of concurrent global read (or write) accesses being is
sued by the application program. A combining network would cope well
with such load conditions.

No other principal impediments to a scalable and efficient RSM implemen
tation have been found under favourable circumstances, i.e. with sufficent
degree of excess parallelism available and global memory access behaviour
without systematic conflicts. Thus, the results principally confirm the desi
rable theoretical properties and indicate encouraging practical efficiency of
RSM.

4.2 Improved Barrier Synchronization

An improved barrier scheme, which arranges the nodes participating in
global synchronizations in a binary tree, has been implemented. In the
course of a global synchronization, sync request messages travel up the
tree. When having received sync request messages from both its subtrees,
the root knows that all nodes have joined the synchronization event and
sends sync acknowledge messages down the tree. Thus, messages are pro
pagated up to log p levels up and down the synchronization tree.

For comparison purposes, an idealized barrier scheme has also been imple
mented. This scheme assumes dedicated synchronization hardware which
enables any node to propagate a sync request signal to a master node in
l11S only. Conversely, the master node can broadcast a sync acknowledge
signal to all participants within l11S as well, independent of system size.

Fig. 4 depicts the results of simulations that allow the effects of different
barrier schemes to be assessed. The experiments have been performed with
system size p varying from 64 to 512 nodes, and with 16 processes per node,
10 supersteps, and the number of accesses per node remaining constant.

The left graph shows that, with increasing system size, total program run
time increases proportionally to sync idle time. Moreover, it becomes evi
dent that sync idle time increases linearly with system size for the centrali
zed barrier scheme, and logarithmically for the tree-style barrier. This is
emphasized by the right graph.

The results also indicate that, while the barrier tree improves over the cen
tralized scheme in terms of performance and scalability, it still entails a
high percentage of sync idle time, up to about 25% for p= 512. This renders
this type of message-based synchronization impractical as well.

www.manaraa.com

113

Elapsed time [ms] Avg. node sync latency [IlS]

4
Total run time 150

3 -'-... --_ ... ,....-;-: :.... -- ______ ..- 100

2

1 50 ------- .. -------.
64 128 256 512 64 128 256 512

Number of nodes (p)

- centralized •. -. - .• binary tree r - - - .. idealized

Fig.4 Comparison of different barrier synchronization implementations

The idealized barrier implementation should be expected to scale with con
stant efficiency, i.e. the average node sync latency should remain constant
with increasing system size. The node sync latency is defined as the time
passing between a node sending out the sync request message (or signal)
and receiving the corresponding sync acknowledge message (or signal).

In the first place, it is quite surprising that the average node sync latency of
the idealized barrier increases significantly with system size. The explana
tion is as follows. In these simulations, the overall number of processes in
creases proportionally with system size. Thus, the probability that the pro
cesses and, eventually, the nodes run out of synchrony increases. This is
caused by the processes encountering different global read and write laten
cies which in turn are due to blocking effects in the network. As a conse
quence, "fast" nodes may have to wait quite a long t.ime for "slow" nodes at
a barrier, thus increasing the average node sync latency.

We conclude that in general the bulk-synchronous style of execution as pro
posed by Valiant is not well suited for highly parallel programs and compu
ters because of the inefficiencies incurred by establishing global synchrony.

4.3 Reduced Process Switching Time

The basic architectural model was extended to allow the process switching
time to be scaled down. Experiments have been performed with process
switching reduced to as low as 20% of the original value, i.e. to 8 cycles.

Fig. 5 shows the effect of reducing process switching time on the run time of
a synthetic load modelled according to the parameters of the matrix multi
plication program/trace. This load allows the number of processes per node
to be varied. This is important since with decreasing process scheduling ti
me the degree of excess parallelism must increase for effective latency hi
ding. System size is p = 17 nodes, chosen such that sync idle time is negligi-

www.manaraa.com

114

ble. Increasing the number of processes is done such that each process is as
signed proportionally less work; the overall amount of work remains con
stant.

Elapsed time [ms]

6

5

4

3

Percentage of
original process
switching time:

100% -
80% .. _ ..
60% a--a.

40% x···· ·x

20% -

2

4 8 12 16 20
Number of proc-

24 esses per node

Fig.5 Effect of reducing process switching time (synthetic matrix multo load)

The results show that reducing process switching time to 80% and 60% of
the original value does in fact reduce program run time, but not to the same
degree. The reason is that, at a given number of processes per node, memo
ry idle time increases with decreasing process switching time, eliminating
part of the efficiency gained by lower waiting time.

More importantly, reducing process switching time to 40% and 20% of the
original time, does not further decrease the run time; another factor of inef
ficiency emerges. Fig. 6 provides an explanation for this behaviour.

Elapsed time [msl Avg. remote read latency [p.sl

20
................

2 16

12 ._._ .•. _._ .•. _.- .
8

0~--~~-=:3~--~----~ 4~--J----L--~----L-__ ~

100 80 60 40 20 % 4 8 12 16 20 24

Percentage of original proc. switch. time
(24 processes per node)

Number of processes per node

Fig.6 Analysis of synthetic matrix multiplication load

www.manaraa.com

115

The left graph shows, for the program version with 24 processes per node,
how the distribution of the CPU time evolves for different process schedu
ling times. While the waiting time decreases linearly, the memory idle ti
me becomes significant for small process switching time. This indicates
that there is a bottleneck in the memory system. Notice that for the smal
lest process switching time, CPU efficiency (active rate) is at about 30%.

The right graph shows that, for small process switching times, the global
memory read latencies increase roughly linearly with the number of pro
cesses per node. The curves indicate that the interconnection network beco
mes a bottleneck. Many processes per node and rapid context switching in
duce many concurrent global memory accesses, ensuing heavy request and
reply traffic in the network. Apparently, such heavy load leads to more in
tense internal blocking, resulting in higher message latencies. It must be
noted that in this 17 -node system a message is routed through a single
C104 switch only. In larger systems with multi-stage networks, this ineffi
ciency must be expected to have a more severe effect on RSM performance.

We therefore conclude that an isolated architectural improvement is of li
mited benefit only. In general, it must be obeyed that the architecture re
mains balanced when improvements are made.

5 Conclusions

In the course of optimal PRAM emulation, RSM has been shown to be an at
tractive approach to implement scalable, universal, and theoretica lly effi
cient shared memory. In this paper, we described the basic principles of
RSM and analyzed its efficiency in terms of constant factors.

In principle, the practical efficiency of RSM was found to be encouragingly
high, if sufficient parallelism was available to effectively mask memory ac
cess latencies. Up to 20% CPU efficiency could be achieved with a parallel
system model which is principally implementable using today's technology.

Process switching time and message-based global synchronizations were
identified as the principal architectural impediments to better performance
and scalability. Major inefficiencies caused by application programs were
found to be an insufficient degree of excess parallelism, very high global
memory access rate, and concurrent reads (or writes) to global data.

Subsequently, two architectural improvements were investigated: reduced
process switching time and improved barrier implementation. More effi
cient process switching was found to significantly increase performance,
and CPU efficiencies of up to 30% were observed. However, this measure
caused the interconnection network to become a bottleneck eventually. We

www.manaraa.com

116

conclude that architectural optimizations for RSM must, in order to be ef
fective, keep the architecture balanced.

Barrier synchronization turned out to remain a significant source of ineffi
ciency even when an idealized implementation was assumed. We conclude
that the bulk-synchronous model of parallelism (BSP), which proposes that
global synchrony is established periodically, is not well-suited for highly
parallel computers. It must be noted that the principles of RSM, in particu
lar the idea to hide high memory access latencies through massive paralle
lism, does not preclude other synchronization schemes to be implemented.

The results indicate that RSM may indeed be a feasible implementation of
shared memory in future massively parallel computers. The following fea
tures are proposed to support RSM in these architectures:
~ extremely fast (or zero-time) process switching as implemented by proces

sors with multiple instruction streams (hardware contexts);
~ a high-bandwidth combining network that is able to on-the-fly combine

global memory reads (and preferably also writes); and

~ an efficient and scalable synchronization mechanism supported by the ar~
chitecture, such as provided by fetch&op or (multi-}prefix memory pri
mitives [1] or synchronization bits associated with memory locations [2].

Several novel machine designs document increased interest in RSM and
such architectural features [1, 2, 14]. Given such support, RSM should be
expected to be an efficient DSM implementation and, in particular, scale to
massively parallel systems with close to constant efficiency.

Acknowledgment

The work reported in this paper was funded in part under ESPRIT P2701
(Parallel Universal Message-passing Architectures).

References

[1] F. Abolhassan, J. Keller, W.J. Paul, On the Cost-Effectiveness and
Realization of the Theoretical PRAM Model, Report SFB 1241D4,
0911991, Univ. Saarbrucken, 1991.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, B.
Smith, "The Tera Computer System", ACM SIGARCH Computer
Architecture News 18(3) (Proc. 1990 Int'l. Con{. on Supercomputing).

[3] D. Chaiken, J. Kubiatowicz, A. Agarwal, "LimitLESS Directories: A
Scalable Cache Coherence Scheme", Proc. ASPLOS IV, ACM, 1991.

www.manaraa.com

117

[4] D.R Cheriton, H.A. Goosen, P.D. Boyle, ParaDiGM: A Highly
Scalable Shared-Memory Multi-Computer Architecture, Report No.
STAN-CS-90-1344, Standford University, Nov. 1990.

[5] A. Gibbons, W. Rytter, Efficient Parallel Algorithms, Cambridge
University Press, 1988.

[6] E. Hagersten, A. Landin, S. Haridi, "DDM-A Cache-Only Memory
Architecture", COMPUTER 25(9),1992.

[7] H. Hellwagner, A Survey of Virtually Shared Memory Schemes, SFB
Report No. 342/33/90 A, Techn. Univ. Munich, 1990.

[8] H. Hellwagner, "On the Practical Efficiency of Randomized Shared
Memory", Proc. CONPAR'92-VAPP V, LNCS 634, Springer 1992.

[9] H. Hofestadt, A. Klein, E. Reyzl, "Performance Benefits from Locally
Adaptive Interval Routing in Dynamically Switched Interconnection
Networks", Proc. EDMCC'2, LNCS 487, Springer 1991.

[10] IEEE Std 1596-1992 Scalable Coherent Interface (SC!), IEEE CS
Press, 1992.

[11] Inmos Ltd., The T9000 Transputer Products Overview Manual, First
Edition 1991.

[12] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J.
Hennessy, M. Horowitz, M. Lam, "The Stanford DASH Multi
processor", COMPUTER 25(3), 1992.

[13] B. Nitzberg, V. Lo: "Distributed Shared Memory: A Survey of Issues
and Algorithms", COMPUTER 24(8),1991.

[14] RD. Rettberg, W.R Crowther, P.P. Carvey, RS. Tomlinson: "The
Monarch Parallel Processor Hardware Design", COMPUTER 23(4),
1990.

[15] J. Rothnie, "Kendall Square Research Introduction to the KSRl", in:
H.-W. Meuer (ed.), Supercomputer'92, Springer 1992.

[16] M. Thapar, B. Delagi, "Scalable Cache Coherence for Large Shared
Memory Multiprocessors", Proc. CONPAR'90- VAPP IV, LNCS,
Springer 1990.

[17] L.G. Valiant: "General Purpose Parallel Architectures", in J. van
Leeuwen (ed.): Handbook of Theoretical Computer Science, North
Holland, Amsterdam, 1990.

[18] L.G. Valiant: "A Bridging Model for Parallel Computation", Comm.
ACM 33(8), 1990.

www.manaraa.com

Methods for Exploitation of Fine-Grained
Parallelism

Giinter Buckle, Christof Stiirmann, Isolde Wildgruber

SiemensAG

Central Research and Development

Otto-Hahn-Ring 6, D-8000 Miinchen 83

E-Mail: boe@zfe.siemens.de

Abstract

Fine·grained parallelism is olTered by an increasing number of proces
sors. This kind of parallelism increases performance for all kinds of
applications, including general-purpose code; most promising is the
combination with coarse-grained parallelism. Unlike coarse-grained
parallelism it can be exploited by automatic parallelization. This paper
presents program analysis and transformation methods for exploitation of
fine-grained parallelism, based on global instruction scheduling.

1 Introduction

Coarse-grained parallelism is well suited for programs with sufficient parallelism inherent to
the algorithms they are based on. The parallelism can most efficiently been exploited by stat
ing it explicitly in the program, while automatic parallelisation is still a research topic for
coarse-grained systems. Only loops of the FORALL-style with suitable array privatization
for distributed-memory systems can be parallelized satisfactorily. While fine-grained paral
lelism cannot offer the high degree of parallel execution as coarse-grained parallelism, the
parallelization can be performed automatically and thus it is well suited for sequential pro
grams and the sequential parts of parallel programs.

Fine-grained parallelism uses concurrent processing of machine instructions - a level which
cannot be seen by a programmer and a performance potential which cannot be exploited at a
higher level. For high-level source-code statements which are strictly sequential we still can
find machine instructions compiled from these statements which can be executed in parallel.
Thus, the two grdnularities of parallelism complement each other. There are already multi
processor systems using both kinds of parallelism - coarse- and fine-grained. The Intel Para
gon is a coarse-grained parallel system with nodes which offer fine-grained parallelism. For
such multiprocessor systems the parallelization of both granularities not only benefit from
each other by using the same methods, but combined coarse/fine-grained parallelization
methods promise higher performance for application programs.

2 Architectures with Fine-Grained Parallelism

Fine-grained parallelism is becoming common in microprocessor development by offering
several functional units per processor - an obvious trend, considering all the new superscalar

www.manaraa.com

119

processors announced or provided by most microprocessor companies. Currently, the
exploitation of this parallelism is perfom1ed dynamically in hardware by fetching several
instructions concurrently and issuing them to the corresponding processing elements. How
ever, the degree of parallelism which can thus be achieved is quite limited (see [6]); for tak
ing advantage of this parallelism, it has to be exploited by corresponding software methods.

In our group we have built a set of tools for the exploitation of fine-grained parallelism. The
methods applied are based on program analyses and transfonnations by reordering the code
statically at compile time so that machine instructions which can be executed in parallel are
grouped together.

Such methods have been developed before for specific fine-grained parallel architectures,
Very Long Instruction Word computers. These architectures offer several heterogeneous
processing elements which are controlled by very long instruction words with one operation
field for each processing element. Thus, these processing eleD1ents execute their machine
operations, grouped in one instruction word, all in the same clock cycle. The machine
operations are reordered at compile time and compacted to the very long instruction words.
The methods used were derived from microcode compaction for horizontally microcoded
machines.

3 Methods for Static Fine-Grained Parallelism Exploitation

The methods for fine-grained parallelization are based on reordering intennediate or
machine code so that groups of instruc!ion~ are fonned which can be executed in parallel.
The main requirement for parallel execution is data and control independence, two depen
dent instructions have to be executed successively. All instruction scheduling methods per
form program analysis first to detennine dependences between instructions.

Inside a basic block, i.e. a sequential part of the control flow, only data dependences have to
be considered. Moving an instruction from one successor path of a branch instruction before
the branch may change a variable read in the other path of the branch instruction and thus
alter program semantics. Thus, for reordering instructions globally, i.e. beyond basic block
boundaries, data-flow analysis is necessary, which can be quite time consuming. Therefore,
many reordering methods use local scheduling, inside basic blocks only, although global
scheduling has a higher parallelization potential.

Methods for local instruction scheduling have already been developed for the CDC 6600.
Since 1981 several global scheduling methods have been published, mostly for horizontal
microcode compaction (see [1] - [5], [7] - [11]). Two classc;:s of global methods can be dis
tinguished, one where a program's flow graph is partitioned into regions of traces or trees
and a local scheduling method like List Scheduling is applied to these regions. At the inter
faces between the regions the program semantics may be changed by these methods, thus it
must be reconstructed by (usually quite costly) bookkeeping methods. The second class
comprises methods applying scheduling to the program graph where the nodes contain inde
pendent operations which can be executed in parallel, and are attributed with dependence
information. Semantics-preserving transformations for reordering are provided, and reorder
ing is separated from strategies contrOlling reordering so that no bookkeeping is necessary.

3.1 Global Scheduling Methods Based on Local Scheduling

Trace Scheduling ([3], [4], [10]) was developed by J. Fisher for horizontal microcode com
paction. A function of a program is separated into traces by first detennining branch proba-

www.manaraa.com

120

bilities for each branch operation, using heuristics or profiling. Traces end e.g. at back edges
of loops. A trace is thus a sequential part of the program and can be rearranged by List
Scheduling. To preserve program semantics, bookkeeping is necessary where additional
code is inserted at entries and exits of traces.

The ITSC (Improved Trace Scheduling) method ([11]) reduces the amount of code-size
increase due to bookkeeping by separating a trace's operations into two sets with different
scheduling priorities, starting with operations on the critical path and the operations depen
dent on those.

The tree-method ([7]) decreases the amount of code increase in Trace Scheduling by sepa
rating a program's flow graph into "top trees" which contain mainly nodes which are not join
or leaf nodes and in "bottom trees" which contain mainly nodes which are not start nodes or
fork nodes. First top trees are scheduled, then bottom trees.

The SRDAG method ([8)) allows for more parallelization potential. Single rooted directed
acyclic graphs (SRDAGs) are considered for scheduling, not just sequential traces. How
ever, bookkeeping is more complex than in Trace Scheduling.

3.2 Global Scheduling on the Program Graph

Percolation Scheduling ([9]) separates the algorithms for moving instructions from the algo
rithms controlling the application of these movements. Scheduling is performed on the pro
gram graph where the nodes contain operations which can be executed in parallel. Core
transformations are used to move an instruction from one node to a preceding node and con
trol algorithms determine the sequence of operations to be moved. Methods like Percolation
Scheduling have a higher flexibility than methods of the other class, more kinds of moves
are possible; in Trace Scheduling, moves across traces are not possible while there are no
trace borders in Percolation Scheduling. However, resource allocation is quite difficult in
methods of the second class.

In [1] a version of Trace Scheduling was developed, based on Percolation Scheduling's core
transformations. The complex bookkeeping phase of Trace Scheduling can be omitted
because the core transformations insert correction code where necessary while moving oper
ations.

In [2], Percolation Scheduling was extended for architectures with speCUlative execution of
instructions. In this model the operations in a program graph node form a tree with the con
ditional branch operations as nodes and the other operations at the edges. Restrictions due to
limited resources are considered for scheduling in this method, too. For each node the oper
ations which can be moved there are determined and the program graph's nodes are filled by
choosing the best of these operations.

A method using an extended program dependence graph for global scheduling is Region
Scheduling, described in [5]. A program is separated into regions consisting of one or sev
eral basic blocks and in these regions loop transformations and instruction reordering are
performed.

4 Program Analysis

A prerequisite for instruction scheduling is sufficient knowledge about dependences of the
instruction to be moved. We developed and implemented interprocedural data dependence
and data-flow analysis methods for our tools. In our system model, all processing is per-

www.manaraa.com

121

formed in symbolic registers, program variables are either memory addresses or directly
mapped to symbolic registers. For each operation the registers read and written, as well as
the memory locations read and written are determined and accumulated for all operations in
a program graph node. These data are also accumulated for all functions and the information
propagated to the operations (and nodes) calling the functions. Thus, we have complete
knowledge about data dependence at all relevant places, the operations, the nodes, and the
functions.

4.1 Analysis of Symbolic Registers

For moving operations beyond conditional branches, data-flow information is required. If an
operation is moved above a conditional branch, it must not write to any location (register or
memory) read by any successor in the other path emanating from the branch operation. This
means, it must not write to any register or memory variable live in the conditional branch's
successors. This data-flow information is gathered in two steps, first intra- then interproce
durally. First, the sets use(n) and def(n) of a program graph node n are detennined, initially
as the set of registers read in n resp. the set of registers written in n which are not in use(n):

use(n) = rreads(n)

def(n) = rwrites(n) - rreads(n)

with rreads(n) = (registers read in node nJ

with rwrites(n) = (registers written in n J

These sets are then enlarged interprocedurally by adding information about functions called
iil n:

use(n) = use(n) u (live_at _ entry(f) - def(n», f called in n

def(n) = def(n) u «dead(f) n must_ mod(f)) - use(n», f called in n

The set dead(f) is the set of registers dead at the entry of a function f and muscmod(f) is the
set of registers written on each path through f. The sets use(n) and def(n) are needed to deter
mine our actual target, the set in(n) of variables live at entry of a node n, which is initialized
with use(n) and enlarged by standard data-flow analysis using the interprocedurally deter
mined sets use(n) and def(n). For the determination of in(n), the standard set outen) of regis
ters live at the exit of a node is used. Interprocedural analyses show the flow of Iiveness
information in both directions - from a called function to the caller and back; the set outen) is
used to collect this information:

U outen) for all nodes n in g containing a call to f
v g calling f n in g

Iterative data-flow analysis is performed most efficiently on a postorder traversal of the
program graph.

4.2 Analysis of Memory Variables

The analysis of memory accesses is more complex than the analysis of registers; for each
register access the register number is known while for memory accesses the address need not
be known at compile time. Thus, the main task of memory access analysis is to find the
memory address accessed.

Each operation accessing memory gets attributed with information about the corresponding
memory variable. This information comprises the variable's type, value, ambiguity, and an

www.manaraa.com

122

expression describing the value. The type of a memory variable is determined according to
its declaration in the source program as: local, global, array, pointer, all; a memory access
where the target cannot be determined is of type "all". A memory access may be ambiguous
if several addresses may be referenced e.g. in: "if (cond) i = 3 else i = 4; ali] = ... ". In such a
case the operation gets the attribute "ambiguous", otherwise "unique". The expression deter
mining an address is part of the operation's dependence information, as well as the address'
value if it can be determined. The dependence information about memory accesses is col
lected for nodes, too, but not interprocedurally yet. Interprocedural dependence analysis for
memory variables requires alias analysis, additionally.

Rules can be determined for moving an operation accessing memory across another memory
access operation depending on their attributes, i.e. if local or global variables are accessed:

local - global can be moved except after a stack overflow.

local - local can be moved if the addresses are different; for ambiguous accesses it has
to be determined if the expressions for the addresses evaluate to disjoint
sets of possible addresses.

local - array

local - pointer

local - all:

can be moved

may be moved if either the local variable cannot be a pointer target or if it
is one, but the pointer cannot refer to this variable.

cannot be moved.

Similar rules apply to the other combinations of memory accessing operations.

For moving an operation accessing an array across another operation of this kind, where at
least one of both writes to memory, memory reference disambiguation has to be imple
mented. For moving operations accessing via pointers or, moving across such operations,
pointer analysis is necessary.

5 Multicycle Operations

In addition to the program analysis methods, resource usage has to be considered for instruc
tion scheduling. The processing elements (PEs), as the most important resources, are consid
ered by representing each cycle in the program graph.

According to the philosophy of Reduced Instruction Set Computers, most operations of a
RISC instruction set need one cycle to complete the execution phase of their pipeline stage.
However, there are operations in many current architectures, e.g. muVdiv, load/store, and
several fioating-point operations, which need more than one cycle for their execution phase.
Therefore, if n cycles (n>l) are required to execute an operation on processing element PEi,
we shall have to consider during scheduling and PE assignment that PEi has to be reserved
during n succeeding cycles for this operation.

As mentioned above, Percolation Scheduling is performed on program graph nodes ([9])
containing operations being data independent and executable in parallel. So, each node rep
resents a Very Long Instruction Word and all these operations within an instruction will be
executed in one machine cycle. Using this data structure, we have to insert fill-ins, represen
tations (called muIticycle-rep) for each of those n cycles, during data-dependence analysis to

www.manaraa.com

123

ensure correct scheduling. All multicycle-reps get the same information about data flow
(use(op), def(op» and data dependences (reads/writes of op's register and memory loca
tions). After assignment of an-cycle (n> 1) operation op to PEi' the first cycle op.l is the i-th
operation within the instruction word and all n-l following instructions will have a noop in
the i-th place.

If there is such a n-cycle operation op in node N, there will be two possibilities for inserting
representations:

1. Creating n-l new nodes each containing one single multicycle-rep op.i (2 ~ i ~ n).
The first cycle op.l remains in N. If these new nodes cannot be deleted during sched
uling, the new instructions generated from these nodes will enlarge the code of the
target program and possibly cause lower performance.

2. To avoid creating new nodes which could become a barrier for scheduling, we
decided to enter the representations in successor nodes where possible. So, op .•
remains in N and representations for the second up to the n-th cycle are entered in
successors Nsucc of N in distance d (1 ~ d ~ n-1) provided that there are no data
dependences between operations of Nsucc and the representation op.i. See figure. as
an example for the insertion of a two-cycle operation 0Pk'

LeIOPk E N 1 be a lwo-cycle operation:

opk.i:
the i·lh cycle of
the mullicycle
operalion OPk

Inserl op.1 for the firsl cycle in N\ and representatives for the second
cycle in N\'s successors in distance 1 (~in N2, N3)

Precondition: oPIc is data independenl on oPm"'oPn and oPo ... oPq

Figure 1: Insertion ormuJticycIe representations

To perform these insertions, data dependences between the multicycle-rep and all operations
of node Nin in which the multicycle-rep should be entered are checked. For each data
dependent multicycle-rep a new program graph node is created containing this
representative. In the following cases the creation of new nodes cannot be avoided, too:

• Node Nin is a leaf but there are still k representations for k further cycles (1:5 k:5 n-l) to
enter. This causes the creation of k new nodes containing only op.i (n-k+l :5 i ~ n).

• Node Nin has a call Uump_and_link) operation and op.i (i < n) is entered in Nin: before
executing instructions of the called function all operations started with or just before the
call have to be finished. So, n-i new nodes have to be inserted into the program graph.

www.manaraa.com

124

• If a branch or call operation itself needs more than one cycle execution time. new nodes
with multicycle-reps will have to be created to ensure correct branching immediately
after the last cycle.

Aggregate multicycle-reps may be used to represent a sequence of nodes containing only a
multicycle representation as single operation. if there are no other operations executable in
parallel to this sequence. When applying one of the core transformations move_op resp.
move_cj to these aggregate nodes, they have to be expanded step by step.

6 Percolation Scheduling

Program transformations are used to reorder the operations so that a high degree of parallel
ism can be achieved; we use Percolation Scheduling (PS) for this purpose. The front-end of
our scheduler creates the program graph where the nodes are attributed with the data-depen
dence and data-flow information determined according to section 4. The objects of reorder
ing are the machine operations in the program graph nodes.

Percolation Scheduling tries to move operations in the program graph as highly up as possi
ble, filling the nodes according to available resources, and deleting empty nodes. PS consists
of several levels; we have extended and structured the definition in [9] where only level 0 is
described and the other levels are just mentioned abstractly.

Level 0: This level of PS comprises a set of core transformations for moving operations
between adjacent nodes, deleting nodes, and merging operations.

Levell: Control tactics specifying how the core transformations are applied to a set of
operations or nodes inside a window around a node N specified by a control
strategy (leveI2).

Level 2: Control strategies determining the sequence of nodes or operations to which
the core transformations are applied using panicular control tactics from level
1.

Level 3 up: The higher levels of PS comprise methods for higher-level constructs, e.g.
methods for loop transformations such as software pipe lining.

The methods are applied according to decreasing levels, i.e. starting with the highest level.

6.1 The Core Transformations

The core transfoffi1ations comprise

- Move_cj for moving a conditional branch operation to a preceding node

- Move_op for moving other operations to a preceding node

- Unify for merging copies of the same operation

- Delete for deleting empty nodes.

The core transformations check all necessary data and flow dependences and insen correc
tive code where necessary. In our implementation the unification of operations which are
copies of the same original is integrated in the move_op and move3j transformations (for
performance reasons). In addition to the methods of [9] we perform the unification of condi
tional branches, too, because in some program graphs a high number of unnecessary copies

www.manaraa.com

125

of a conditional branch may occur. Below, the move_op and the move_cj ttansformations
are described in detail, as well as move_multicycle_op, a transformation we developed for
moving multicycle operations in the program graph; this ttansformations comprises the uni
fication of operations, too. The delete transformation which just deletes empty nodes and
adjusts the graph's edges is not described funher.

6.1.1 Move_op

Figure 2 shows the move_op transformation. This core ttansformation moves an operation
Op'j from a node N to a preceding node M. The operation can be moved if there are no
read_aftecwrite, write_after_read or write_after_write data dependences and if op'j does
not write to a variable live at the beginning of N3 (off-live dependence). A copy N' of node
N is needed if N has another predecessor besides M, e.g. N2 in figure 2.

Figure 2: Move_op

For processors with multi way branches, such as VLIW or conditional-execution architec
tures, several conditional branches may reside in the same node. For supponing these archi
tectures, the operations inside a program-graph node are structured in a tree. The nodes are
the branch operations and the edges contain the operations on the paths emanating from a
branch operation.

The data dependences checked for move_cj are only read_after_write dependences because
a conditional branch does not write to a register (except the PC which is not considered here)
or to memory. Figure 3 shows the trees of operations inside a program graph node and how a
conditional jump cj is moved from a node N to a preceding node M. The operation cj has a
left subtree Tf (building the FALSE-path) and a right subtree Tt (the TRUE- path). Node N is
copied twice, to the nodes Nt and Nf. In Nt the FALSE-subtree Tf of cj is omitted together
with cj and in Nf the TRUE-subtree T(of cj is omitted together with cj. The conditional jump
itself is moved to the bottom of the tree in node M and M has now Nf and Nt as successors
instead of N. The node N can be deleted if it has only M as predecessor.

www.manaraa.com

126

Figure 3: Move _ cj

6.1.3 Move _multicycle _ op

This core transfonnation is an extension of move_op: instead of moving a single operation
from one node to its predecessor, a whole sequence of multicycle representations from op.1
to op.n is moved. See figure 4 showing an example for moving a two-cycle operation op
from node N to M and notice the integrated unify of op.1 in N respectively in N4. In our
example, if op.l can be displaced from N resp. N4 to M, each multicycle-rep op.i (2:5; i:5; n)
will be moved to the predecessor node Ni-l containing op.i-l before the move.

Generally, let op E N be a n-cycle operation (n> l) with representations op.3 to op.n insened
in successors of N2, N3' and NS' Before moving any multicycle-rep, data- and off-live
dependences of op.l on all operations of M have to be checked with respect to registers and
variables. If there are no dependences and if there are sufficient resources to execute op.1 in
parallel to all operations of M, move the whole sequence op.l to op.n in the following man
ner:

• Preservation of the semantic correctness:
If N has not only M as predecessor (3 Npred :t= M):

Copy the whole multicycle-tree (i.e. all nodes containing multicycle-reps op.i, 1 :5; i
:5; n) with all its edges and adjust the edges from all predecessors Npred, Npred -j:. M,
to N: from Np~ed to the root of the multicycle-tree copy, In figure 4, the tree with
nodes N, N2, N3 is copied, and the edge from Nl to N is adjusted from Nl to N'.

• Treatment of M:
Take all op.l which are in successor nodes of M - these copies result from previous
applications of move_mulricyc/e_op - and insen one multicycle-rep op.l in M - corre
sponding to the core transfonnation unify. In figure 4., op.l in N and in N4 are unified
and moved to M.
Update data-dependence and liveness infonnation of M and allocate resources for exe
cuting op.l in M.

www.manaraa.com

127

• Treaunent of all multicycle-reps from op.2 to op.n; V i, 2 :5 i :5 n: Ni contains op.i:
If the predecessor node Ni-l containing op.i-l (for i=2, Ni.l = N) has only one succes
sor Nj, move op.i to Nj_1. In our example, N4 has only the successor NS; therefore,
move op.2 from NS to N4'
Otherwise, if Ni-l has two or more successors, remove opj in each Nj and insert one
multicyc1e-rep op.i in Nj_l' Dependence, liveness and resource checks are not neces
sary here, because they were already done when the representations op.i were inserted
for the first time. In figure 4, N has two successors, Nz and N3' each containing op.2.
Remove op.2 from N2 and N3. and enter a single op.2 into N.

Preconditions:
- op.l can be moved to M (no dependences or resource conflicts)
• op.2 can be insened into N6 (no dependences or resource conllicts)

• Treaunent of all nodes Nn containing op.n originally:
After op.n has been moved to pred(Nn), update data-dependence and liveness informa
tion of Nn and release all resources which were reserved for op.n in Nn; in our exam
ple. do this for N2, N3, and Ns.

• Preservation of the semantic correctness after moving:
If there are successors of M which do not contain op.I. e.g. N6 in figure 4.:

Try to insert multicycle-reps in distance d from M (1 :5 d :5 n-I), as described in sec
tion 5. In our example. insert op.2 in N6'

If node N has more than one predecessor M, we shall have to copy entire multicycle-trees
which can increase the number of program graph nodes significantly. Therefore. the control
strategy may restrict the application of move_mu/ticycle_op: the multi cycle operation will
only be moved. if op.l can be inserted in all predecessors of N.

The decision whether a multicycIe operation should be moved belongs to the problems
solved by the control strategies described below.

www.manaraa.com

128

7 Controlling Mechanisms

As mentioned above, the PS core transformations allow using various control mechanisms.
Therefore, our task is to develop control strategies applying core transformations in a suit
able order to create nearly optimal schedules.

In our first version we do not provide moves across loop boundaries. To prevent those moves
we define regions of the program graph, separated by loop boundaries, and allow move
ments only within regions. Hence the regions, control strategies are applied to, are acyclic
subgraphs of the program graph.

We distinguish between two basic approaches of control, the node-oriented and the opera
tion-oriented approach. Both approaches consider layer one and two of PS. Layer one con
tains a control tactics scheme describing local moving rules applied to a node or operation.
Layer two contains the actual control strategy specifying the sequence how control tactics
are applied to nodes or operations.

Scheduling all movable operations is a task of high complexity and the quantity of core
transformation applications (up to many tenthousands) may exceed acceptable compiler
runtime. Therefore, we provide windows of arbitrary size to limit the range of the control
tactics. Both, window size and number of passes for application of control strategies can be
varied.

Some of the control strategies and control tactics are introduced below.

7.1 Control Strategies

Control strategies (layer 2) determine the sequence of nodes to be considered for scheduling.
Such a sequence may be chosen as:

• path-oriented: Prioritizing scheduling along critical paths reduces the number of cases
where schedule lengths are unnecessarily increased by early placement of uncritical oper
ations. The "critical path" can be chosen as:

- simply the longest path along nodes of a program graph or

- the most probable path along nodes or

- the longest chain of data-dependent operations; a path is built by the nodes contain-
ing these operations

The last kind of path corresponds to the operation-oriented approach, the previous kinds
to the node-oriented approach. When the nodes' execution probabilities are determined
by clever heuristics or profiling, taking the most probable path seems to be most promis
ing. Otherwise, the longest path along data-dependent operations is a preferable choice .

• bottom up: Nodes are visited upwards from the region's leaves to its top node. Candidates
for current bottoms are nodes whose successors are either

- already visited (resp. filled) or
- not in the same region or
- only reachable via a back edge.

The bottom node may be determined with
- left-downward DFS (depth-first search),

www.manaraa.com

129

- right-downward DFS or
- critical-path-downward DFS

In the last method, "critical path" can be viewed as longest path or as most probable path
through nodes. The advantage of this method with respect to the pure path-oriented strat
egy is a higher probability for the application of the core transformation unify, because the
successors of the current nodes are guaranteed to be treated before them. Thus, an opera
tion and its copy have likely reached the current node's dominator on their way up
through "diamond structures" and are reunifiable .

• top down: Nodes are visited downwards from the region's top node to its leaves. The tra
versal may be performed analogously by several kinds ofDFS.

Several passes of the strategies may be applied, even including different strategies. The bot
tom-up strategy supports moves of data-independent operations up to the region's top within
one pass. In the top-down strategy, the movement of those operations is restricted by the
window size of the control tactics. However, top down is able to move long chains of data
dependent operations, while in bottom up the chain length is restricted by the window size of
the control tactics.

7.2 Control Tactics

The control tactics layer lies between the strategy layer and the core-transformation layer.
The tactics specify rules how to apply core transformations within a window attached to a
given node N or operation op. This node N or operation op are specified by the control strat
egy, as well as the sequence of control tactics applied.

7.2.1 Node-Oriented Tactics

Node-oriented tactics are for instance pull_n or push_n (see figure 5).

Figure 5: pull with window size 2 push with window size 2

• Pull_n performs moves in a window reaching from the strategy-selected node N to all
successors of N within a distance of n. It tries to move all operations up to the window's
top node N. Pull_n may be realized in a way so that all the operations movable to N are
determined and the optimal one is chosen as proposed for the VLIW-Scheduler of IBM at
Yorktown Heights (see [2]).

www.manaraa.com

130

• Push_n works in the opposite manner. The window includes the strategy-selected node N
and all predecessors with a distance not greater than n to N. These tactics try to move all
operations from N within the window as highly up as possible.

While data dependences have to be checked between op and each node on its way up,
resource constraints have to be checked only between op and its destination node. In this
manner, operations can be passed even through nodes which are full with respect to
resources.

Pull_n is a suitable method to fill nodes with operations under resource constraints. Push_n
aims at emptying nodes. Thus it reduces compiler runtime by early deletion of nodes.

7.2.2 Operation-Oriented Tactics

Some examples for operation-oriented tactics are shown in figure 6.

migratt_ within_trace migrate

• Move_lO_al/yreds moves an operation op of node N simultaneously to all predecessors
of N. If it can be perfornled, a copy node is not required .

• Migrate_within_trace moves an operation op along a trace uppermost in the region. The
different kinds of critical paths mentioned above are considered as traces.

• Migrate takes an operation op and moves it upmost in the region. These tactics are used
in Compact_Global ([1]) and in [2].

For migrate and migrate_within _trace we may specify a window to restrict moving dis
tances to a predefined length.

Additional tactics may be considered for particular patterns in the program graph, e.g. for
diamond structures or chains of if-then-constructs (stairs). In the case of diamond structures
a node M contains a conditional jump and both paths emanating from M rejoin later in a suc
ceeding node N, typical for "if-then-else" constructs. Moving an operation op upward from
N causes the creation of one (or more) copy node(s). We try to move op directly to M with
out actually inserting it in the intermediate nodes in the diamond structure. Thus, the number
of copy nodes is reduced. Blocking in intermediate nodes due to resource shortage can be
avoided. too.

www.manaraa.com

131

8 Conclusion
Fine-grained parallelism is offered by most new microprocessors. The methods and tools
described above offer the way to exploit this parallelism so that it can be used for application
software. Interprocedural program analysis and global instruction scheduling methods
described above are the base for this exploitation. Percolation Scheduling has been enhanced
by representations and transformations for multicycle operations and by scheduling tactics
and control strategies directing how to apply Percolation Scheduling's core transformations.
With these new scheduling tactics and control algorithms we have specified methods for the
new levels 1 and 2 of Percolation Scheduling.

Parallelization methods for the upper levels of Percolation Scheduling, mainly for loop han
dling will further enhance performance. This is one of the areas where methods for coarse
and fine-grained parallelization complement each other and lead to higher performance, by a
combination of coarse- and fine-grained loop parallelization. There and in other areas, both
methods can complement each other and lead to higher system performance.

9 References
[1] A.Aiken:

Compaction-Based Parallelization
PhD Diss., Techn. Report No. TR88-922, Cornell University, Ithaca, NY, June 1988

[2] K.Ebcioglu, A.Nicolau:
A Global Resource-constrained Parallelization Technique
Proc. 3rd Int. Conf. on Supercomputing, Crete, June 1989, pp. 154-163

[3] J.R.Ellis:
Bulldog: A Compiler for VLIW Architectures
MIT Press, 1985

[4] lA.Fisher:
Trace Scheduling: A Technique for Global Microcode Compaction
IEEE Transaction on Computers, July 1981, pp. 478-490

[5] R.Gupta:
A Reconfigurable LIW Architecture and its Compiler
PhD Dissertation, University of Pittsburgh, 1987, Order No. 8807357

[6] N.P.Jouppi:
The Nonuniform Distribution of Instruction-Level and Machine Parallelism and Its
Effect on Performance
IEEE Trans. on Compo Vol. 38, No. 12, Dec. 1989

[7] l Lah, D.E.Atkins:
Tree Compaction of Microprograms
ACM SIGMICRO 16th Annual Workshop, pp.23-33, Oct. 1983

www.manaraa.com

132

[8] J.L. Linn:
SRDAG Compaction - A Generalization of Trace Scheduling to Increase the Use of
Global Context Information
ACM SIGMICRO 16th Annual Workshop, pp.1l-22, Oct. 1983

[9] A.Nicolau:
Percolation Scheduling: A Parallel Compilation Technique
Technical Report TR 85-678, Cornell University, Ithaca, NY, May 1985

[10] C. StOrmann, G. Piepenbrock:
Erzeugung parallelen Codes flir VLIW-Architekturen durch globale Kompaktierung
Diplomarbeit, TU Miinchen, May 1990

[11] B.Su, S.Ding, L.Jin:
An Improvement of Trace Scheduling for Global Microcode Compaction
ACM SIGMICRO 17th Annual Workshop, pp.78-85, Oct 1984

www.manaraa.com

Causality Based Proof of a Distributed Shared
Memory System

Dominik Gonun Ekkart Kindler

1 Introduction

Technische Universitat Miinchen
Institut fiir Informatik

Arcisstr. 21
W-8000 Miinchen 2

Germany

The specification and verification of distributed systems calls for techniques tuned
to the particular area of application. In this paper we introduce a specification and
verification technique which exploits the order (causality) in which different events
of distributed systems must occur. The technique is illustrated by applying it to
a distributed shared memory system (DSM-system). We model a DSM-system by
means of Petri net protocols for a DSM-system and prove that the executions of the
protocols respect the specified ordering of events.

During recent years DSM-systems have gained great importance, because

• on the one hand it is easy to build hardware for distributed systems with phys
ically distributed memory,

• on the other hand the concept of a shared memory is easier to understand when
developing parallel programs.

In order to combine the advantages of both concepts, DSM-systems in a virtual way
provide a shared memory on the basis of a physically distributed memory [7, 1]. Simi
lar problems have for long been investigated in the fields of cache coherence protocols
[11] and distributed database management systems [2]. In [8] it is investigated in
which way DSM-concepts can be incorporated into concurrency control of distributed
database management systems.

There are many different approaches to build efficient DSM-systems. An overview on
these approaches is given in [6J. In this paper we follow the caching approach of [3J:
Variables are assigned to pageswhich are located on different nodes (page owners). In
order to reduce expensive accesses to variables which are located at different nodes,
there may be copies of the original page at other nodes. When there are several copies
of the same variable, the consistence of the copies must be guaranteed. To formalize
the notion of consistence, data coherence concepts have been introduced. [3J employs
the concept of weak coherence [lJ.

www.manaraa.com

134

The paper is organized as follows: Section 2 formalizes the concept of weak coherence
within the framework of causalities. In Sect. 3 we introduce the Petri net protocols
as an abstract operational model of the DSM-system in (3). In Sect. 4 we apply our
methods to prove its correctness with respect to the specification.

2 Weak Coherence

In this section we introduce the basic notions which are necessary for a formal treat
ment of weak coherence.

2.1 Control Flow and Read Relation

From an abstract point of view an execution of a distributed program is a partial order
of events, which is called control flow. The control flow describes which events must
occur causally before others. Typically, there are a number of (sequential) threads
interacting with each other by communication events as shown in Fig. 1. Some events

Figure 1: Example of an execution

are ordered by the control flow (e.g. W; and R!). But, if the relative speed of the
two threads is unknown, there will be pairs of events (of different threads) for which
no order can be fixed. For example consider R~ and W; in Fig. 1. Events which are
not ordered by the control flow are called concurrent.

Notation 1 If two events x and yare ordered by the control flow this is denoted
by x -+ y. Graphically we represent the control flow as in Fig. 1. Note that -+

is transitive, and thus transitive arcs can be omitted in the graphical represen
tation. Sometimes we indicate the transitive relationship by dashed arcs.

www.manaraa.com

135

In the context of memory coherence we are only interested in the occurrence of read
and write events (denoted by R:c and Wx, respectively, for accesses to variable x), and
in the occurrence of communication events which establish a control flow between
different threads. In this paper we use asynchronous send and receive events (denoted
by sd and rv, respectively). Additionally, we have to know which values are written
and read by the different write and read events. Since a read event returns the value
written by exactly one write event!, this information can be formalized by a relation
on write and read events, without mentioning values at all.

Notation 2 When a read event Rx reads the value written by write event W""
we write Wx "-t Rx and call this relation read relation. The read relation satisfies
the following conditions:

1. For every read event Rx there exists exactly one write event Wx such that
Wx"-t Rx.

2. For every two events Wx and Rx, Rx -+ Wx implies W:c + Rx.

Informally, condition 1 says that a read event returns exactly one value; con
dition 2 says that no read event returns a value which will be written in its
future.

Graphically the read relation is represented by thick arrows as shown below:

An execution of a distributed program consists of a control flow and a corre
sponding read relation.

2.2 Definition of Weak Coherence

For the control flow shown in Fig. 1 a read relation from W; to R; would indicate
that R; reads the obsolete value written by W;. W; is obsolete w.r.t. R;, because
there is another write event (Wn that occurs causally between W; and R;.
In order to rule out such executions, we formalize the concept of weak coherence:

Definition 3 (Weak Coherence)

An execution is weakly coherent iff for every Wx, W;, and R x, Wx -+ W; -+ Rx
implies Wx + Rx· W' -----0-----

Figure 2: Definition of weak coherence

Figure 2 shows a graphical representation of this definition. In combination with the
properties of the read relation this characterization of weak coherence is equivalent

1 Assume that there is an initial event which writes an undefined value to variable z.

www.manaraa.com

136

to the definition given in [1), and covers the list of requirements for a specification of
weak coherence in [3).

The control flow of Fig. 1 becomes a weakly coherent execution iff R!: reads the value
written by W;, W;, or W;, and R! reads the values of W;, W;, or W:. This shows
that in addition to the values of the immediately preceding write events, Def. 3 allows
that a read event reads the value of a concurrent write operation.

2.3 Physical Realization of Read Relation

The read relation Wx "-+ Rx of an execution is only an abstract relation which is
not justified by the physical propagation of data. In real systems the read relation
must be realized by a combination of data propagation events. In addition to read
and write events of the execution we allow events for making copies of variables, and
for combining the values of different write events to the same variable. The following
definition shows in which way these operations establish the read relation.

Definition 4 (Propagation Events)

A read event does not change the value of a variable. This is captured by the fact
that the read relation 'passes through' a read event as shown in the graphical
representation below. A write event, however, changes the value of variable x,
and therefore the read relation does not 'pass through' a write event.

In addition to the events which belong to a program's execution there are prop
agation events which are part of the hardware or software environment in which
the program is executed. There is a copy operation ex which produces copies
of variable x

and there is a merge operation Mx which combines the value of two write op
erations, i.e. which propagates the value of one and overwrites the value of the
other.

The arcs of these propagation events correspond to real data paths. Therefore, when
combining propagation events at the points -+0 ~ , these paths refine the read
relation of an execution. In Fig. 3 R; and R! read the value of W;, i.e. W; "-+ R;
and W; "-+ R;. R; reads the value of W;, but not of W; or W;.

www.manaraa.com

137

Figure 3: Example of linked propagation operations

2.4 Control Flow, Information Flow, and Weak Coherence

A weakly coherent system could be implemented according to the previous definitions
using the propagation events to establish a weakly coherent execution. However,
Fig. 3 shows that the read relation is not transitive at write and merge events. Thus,
the read relation is not a causality. Since causality based specifications are easier
to be proven correct2 , we will give another characterization of weak coherence which
is based on the transitive closure of the read relation. We call this transitive (and
reflexive) closure information flow and denote it by '"'-'+*. In graphical representations
we use dashed thick lines to indicate information flow:

w",D- - - - - - - - - - +DR",
In the following we present two properties which are essentially based on the different
kinds of causalities, and which imply weak coherence. The first property guarantees
that according to the flow of information every read operation Rx has 'knowledge' of
all write operations Wx which precede Rx according to control flow.

Definition 5 (Information Availability)

An execution in which the read relation is refined by propagation operations
(refined execution for short) satisfies the information availability property iff for
every read operation Rx and every write operation Wx holds: W", -+ Rx implies
Wx '"'-'+* Rx·

Figure 4 shows a graphical representation of this definition.

Figure 4: Information availability

In order to guarantee that information availability implies weak coherence we need an
additional property which requires that only correct values (i.e. newer ones accord
ing to control flow) are propagated by the merge events. This is formalized by the
following property.

2see Section 4

www.manaraa.com

138

Definition 6 (Correct Merge)

A refined execution satisfies the correct merge property iff there are no write
events W'" and W; and no merge event M", such that the following relations
hold:

The combination of the properties of De£. 5 and 6 is a sufficient condition for weak
coherence.

Proposition 7 Every refined execution which satisfies the correct merge prop
erty and the information availability property is weakly coherent.

Proof: Suppose the execution satisfies information availability, but is not
weakly coherent. Then according to Def. 3 there exist W"" W; and R", such
that W'" -t W; -t Rx and W" ~ R". By De£. 5 and 4 there exists a merge event
Mx such that the following relations hold:

Wx ------G------

Then the correct merge property does not hold. o

2.5 Page Concept

Implementing weak coherence by a caching concept is only efficient when variables
are collected in pages. The following considerations show that the above definitions
can be easily adapted to the page concept.

The write event W: to a variable y on page p comprises of a collection of events: There
is one write event on variable y, and there are copy events for all other variables (see

Figure 5: Write event on variable y of page p

Fig. 5). Similarly, we restrict the merge operation such that a merge event on page
level corresponds to a merge event on a single variable (see Fig. 6). A read event

www.manaraa.com

V H;l .
139

Figure 6: Merge event on variable y of page p

on page level can be modelled as a collection of copy events and one read event on
variable level. Copy events on page level comprise to a collection of copy events.

If there is an information flow on page level, then there is an information flow w.r.t.
every individual variable of that page. This can be used in proving the information
availability property on page level. For proving the correct merge property for a merge
event M: we must consider only the dataflow of variable y. For the other variables x
of page p M~ is only a copy operation for which nothing must be proved.

3 Model of a Weakly Coherent System

In this section we present a model of a weakly coherent system. Since we only intro
duced weakly coherent executions, we will briefly mention weakly coherent systems
in the following.

3.1 Weakly Coherent Systems

A weakly coherent system should execute distributed programs such that the corres
ponding program executions are weakly coherent. We do not want to formalize the
notion of executing a program by a system here, because this would be tedious.
Rather, we simulate the execution of an arbitrary distributed program by nondeter
ministically choosing write, read, and synchronization operations for each thread of
the distributed program.

3.2 Modelling the System

The system is described by means of protocols which determine the behaviour of the
operations mentioned above. The protocols are formally represented by Petri nets3

for the following reasons:

• Petri nets have a partial order semantics which explicitly expresses causality
and concurrency.

• When using Petri nets, not only events but also states can be modelled. States
are needed to model the state of objects like pages, messages or copies.

• Petri nets have expressive analysis techniques, some of which will be used in the
proof.

aFor a formal introduction to Petri nets we refer to [9] and [10].

www.manaraa.com

140

Before introducing the protocols we describe the algorithm which guarantees weak
coherence. We assume that each sequential thread of a program is mapped on a node
and that the memory is partitioned into pages which are distributed over the nodes,
i.e. each original page is located at exactly one node, called its owner. Each variable
can be accessed by an address ((n, v), 0) with node number n, page number p = (n, v)
and an offset 0 for the relative address of x on page p.
Because we follow the caching approach, there will be copies of original pages to
speed up subsequent accesses to pages which are owned by other nodes. When copies
become obsolete because of synchronization events, these copies should not be read
again. Therefore, before a send operation of a thread is executed, the system sends
invalidation messages to all possible holders of obsolete copies. If a node receives such
an invalidation it destroys the corresponding copy.

This algorithm is given in four protocols, one for each operation a thread may perform:
read, write, send, and receive, called user operations. Usually, Petri nets do not
distinguish different causalities. Figure 7.1 shows the representation of the usual arcs
in Petri nets. The arcs representing control flow and the information flow are indicated
by the arc types shown in Fig. 7.2.

----~I> usual arcs

Figure 7.1: Usual arcs in the protocol

USEROP'S
ONNODEi

ready

•

OPERATING
SYSTEMi

tp.\ invalid
~pages

copies

original
pages

Figure 8.1: Protocol for reading I

control flow

information flow

Figure 7.2: Specially marked arcs

USEROP'S
ON NODE i

ready

OPERATING
SYSTEMi

Figure 8.2: A run of the protocol

The first protocol for reading a value is split into two figures for the sake of compre
hensibility. Figure 8.1 shows how to read from a page in the local memory. Initially,

www.manaraa.com

141

a thread is ready and may perform an operation. Each node has some original pages
Pi, all other pages Pi are invalid. If a thread on a node i wants to read a value x, it
calls the local operating system (tt} which reads the corresponding value from page p
if p is available as a copy (tz) or as original page (t3). After that, control is given back
to the thread which may then perform the next user operation (t4). The behaviour of
a protocol is described by its runs. Figure 8.2 depicts a run reading from an original
page.
If neither a copy nor the original of page (n, v) is accessable, the node requests a
copy of the owner n of the original page and waits until it receives this copy. Then
it performs the read operation and stores the copy for future read events as shown in
Fig. 9.

USEROP'S
ONNODEi

ready

•

OPERATING
SYSTEMi

rec. copy
and reading

NETWORK

: mailbox i

Figure 9: Protocol for reading II

OPERATING
SYSTEMj

The protocol for writing a value x to a page p is given in Fig. 10. Each write access4

to a variable x = (p, 0) modifies the original page p, either locally by writing directly
to it, or by sending an update up(p,o) to the owner n of p. If there is a local copy of
page p, it will be modified as well. When the update is registered in the mailbox of
the owner, the thread may proceed.

Thus, all the original pages are continously updated, but copies only contain local
modifications and may become obsolete with respect to the originals. Therefore,
copies are invalidated whenever threads synchronize. This is specified by the protocol
in Fig. 11.

4 Actually, we do not model the change of a value, since by the read relation we only need to know
which read operations read the written value.

www.manaraa.com

USEROP's
ON NODE i

USEROP'S
ONNODEi

ready •

142

OPER. SYSTEM i NETWORK

Figure 10: Protocol for writing

OPER. SYSTEM i

receiving
ack

OPERATING
SYSTEMj

Figure 11: Protocol for the sending of synchronization messages

www.manaraa.com

143

So-called invalidation messages for a set of pages P are broadcasted to all other
nodes causally before sending a synchronization message. P contains all the pages
that were updated on node i since the last synchronization message. The effect of
the protocol is that a synchronization message can only be sent to node j provided
that all invalidations are written to the other nodes' mailboxes. In order to ensure
that invalidation messages are processed prior to the corresponding synchronization
message, mailboxes are defined as FIFO buffers. As a shorthand for FIFO buffers we
use shaded places.

waiting ~or
message·

ready •

receiving internal
msg buffer

storing
msg

Figure 12: Protocol for the receipt of synchronization messages

Figure 12 shows the protocol for the receipt of a synchronization message m from
another node j and the reaction on invalidation messages inv(P): copies of pages
pEP are set invalid. Both message types are stored in an internal buffer to prevent
the system from deadlocks of the following kind. Assume that ahead of the mailbox
there is a synchronization message from another node j, but the operating system
expects a copy for reading (as shown in Fig. 9). This copy can never be received
because of the FIFO property of the mailbox. Thus, messages are shifted into a
buffer, and therefore, invalidations are shifted as well to retain the order between
both message types.

4 Proving the Weakly Coherent System

In order to prove that the modelled system is weakly coherent we show that it satisfies
Def. 5 and 6. Thus, the correctness proof is in two parts. Subsection 4.1 shows that
the protocols satisfy the information availability property, in Subsect. 4.2 we prove
the correct merge property. Both proofs are based on the partially ordered runs of
the protocols.

www.manaraa.com

144

4.1 Proving the Information Availability Requirement

In order to prove the information availability requirement from Def. 5, all combinations
of write accesses preceding read accesses must be considered. They are completely
listed in [4]. Here, we only prove one case, because all the cases can be proved by the
same technique.

ong

ong

Figure 13: Premise: write precedes read by message passing

We consider the situation of a local write operation W to a variable x on a page p that
precedes a remote read operation R to the same variable of another thread as given
in Fig. 13. Using the following arguments we will show that there is an information
flow from W to R.

1. The control flow W --+ R given by premise is refined according to the send and
receive protocols. Wand R are not yet related by the information flow in this
run (Fig. 15).

2. In a second step we deduce an order between events taking messages out of mail
boxes. To this end, we use the following properties of shaded places (mailboxes)
III a run:
a) Input accesses are totally ordered.
b) Output accesses respect the order of the input accesses.
This is graphically depicted in Fig. 14.

e1q------4
I \

/ \ , \

I OR I
\ ,
\ /

\ I

e2 tJ------.ce

e J~f-----I.----IQ e3
I I
I I
I I
I I
I I
I I
I I
I I

e2D1---4f-----G
Figure 14: Semantic definition of mailboxes

3. Different occurrences of the same places in the run are set into causal relation
by using regular place invariants. A regular place invariant is a set of places in

www.manaraa.com

145

the protocols such that the sum of tokens on all these places is always 1. Its
places cannot be concurrent in a run, because they cannot be marked at the
same time. By that, we can conclude that any two occurences of such places
are causally ordered in one or the other direction.

4. Because of the acyclicity of partially ordered runs we can rule out one of these
two possible orders such that an information flow from the write to the read
event can be deduced.

orig

orig

orig

orig

send
inval

send
msg

receive
I

mailbox qnval :

------------------b : :~est

copy

copy

Figure 15: Deterministic extension of the run

I
I
I

remote
read

Proof of the run in Fig. 13 We deterministically extend the run depicted in 13 as
fixed by the protocols. This extension is shown in Fig. 15. Prior to the transmission of
the synchronization message an invalidation message (concerning page p and others)
is sent. Both messages are sent to the mailbox of the reading node and shifted into
the buffer. The read operation is extended by a copy request d. the protocol in Fig. 9,
because initially there are no copies which can be read.

By the following arguments we can prove that this run satisfies the information avail
ability requirement. This is depicted in Fig. 16. Since el occurs causally before e2 and

www.manaraa.com

146

mailboxes and buffers respect the FIFO order of messages, the invalidation is received
causally before the synchronization message (1).

send
Inval

send
msg

receive
loval

receive
meg

i I
.(2) I

----------------ti=.-
copy

Figure 16: Proof of the information availability

I
I
I

ramota
read

Figure 17.1 shows a regular place invariant I for each page on a node which is not
owned by that node: it is either invalid or there is a copy or the node is waiting for
a copy. By that, we know that the occurrences of inval and copy on the reading
node are causally ordered. This causality cannot order copy prior to inval because
this would establish a cycle in the partially ordered run. Thus, they are ordered as
depicted by (2).

Using the very same argument we can prove that information flows transitively from
the write to the read event. By the regular place invariant J in Fig. 17.2 we know
that the occurrences of orig on the writing node are totally ordered. This order is
indicated by (3). Again, assuming this order in the opposite direction (from the lowest
to the highest of the four occurrences of orig) would yield a cycle. Because all arcs
of the place invariant correspond to information flow, causality (3) constitutes an
information flow from the write to the read event. Thus, the information availability
requirement holds.

www.manaraa.com

147

rec. copy & read waiting read

read write write invalidate

original
pages

Jb
read write

Figure 17.1: Regular place invariant I Figure 17.2: Regular place invariant J

4.2 Proving the Correct Merge Property

The correct merge property can be shown by analogous arguments. Due to the lack
of space we only give a sketch of that proof. Figure 18 shows the refined premise of
that property: A remote write event W'" occurs causally before another remote write
event W~. Both updates are merged in the original page by M: and Mi'. We will
prove that M: occurs not causally after Mi' w.r.t. information flow. This is sufficient,
because a new value overwrites the old one from the page as specified in Fig. 6.

ready

W'x

waiting

ready

orig orig

Figure 18: Proof of the correct merge property

The acknowledgement forces W'" to be written to the owner's mailbox prior to W;
(1). Because of the FIFO property of the mailbox, the merge events are ordered as
depicted by (2). From that we know that the causality between the occurrences of
orig - which exists by the regular place invariant from Fig. 17 - orders M: before
Mi' w.r.t. information flow.

www.manaraa.com

148

5 Discussion

We have given a protocol based model for a weakly coherent DSM-system, and proved
this model to satisfy the specification which is based on different causalities. Moreover,
we proved that the specification implies the one given in [3J.

One should remark that this specification only consists of a safety property. Thus,
even a system that deadlocks any user operation satisfies this specification, because
it prevents any control flow. In that case nothing must be shown. In [4) we specified
an additional liveness requirement and proved the protocols to be live by standard
methods of temporal logic.

The proposed model determines all conceptual aspects to yield a correct system.
For example, omitting acknowledgements or using mailboxes without FIFO property
would destroy correctness. On the other side, we have not yet fixed an implementation.
The correct model still allows several different implementations, but all of them are
proved to work properly. For example, to achieve correctness we demanded that
invalidation messages are received prior to synchronization messages, but we have
not determined when to invalidate pages. Invalidations may be executed as soon as
they are ahead of the buffer or as late as possible, i.e. when the node is waiting for a
synchronization message. This is modelled by a conflict in the protocols allowing for a
variety of correct implementations. Depending on the hardware or the communication
frequency of the application tasks the most efficient strategy may be implemented.

We have laid stress on the adequacy of Petri nets and their partial order semantics
for the treatment of weak coherence. The same formal method may be applied with
benefit to other systems executing distributed programs. For example, we applied
this method in [5) for proving a DSM-model which allows for the migration of original
pages. More generally, it can be applied to cache coherence protocols [11] and in the
field of concurrency control in distributed databases.

Acknowledgements

The ideas in this paper have been developed jointly during a cooperation of the
projects A3 and Cl within the SFB 342 at TU Munich. We want to thank L. Borr
mann and P. Istravinos (Siemens AG, Munich), who advised us in the concept of weak
coherency and provided us with several existing implementations of weakly coherent
systems. Moreover, we are grateful to Rolf Walter for some useful comments on earlier
versions of this paper and to Dieter Barnard for carefully reading the manuscript.

References

[IJ J. K. Bennet, J.B. Carter, and W. Zwaenepoel. Munin: Distributed shared mem
ory based on type-specific memory coherence. In 2nd ACM SIGPLAN Symposium
on Principles and Practise of Parallel Programming. ACM, March 1990.

[2J P.A. Bernstein and N. Goodman. Concurrency control in distributed database
systems. ACM Computing Surveys, 13(2):185-221, June 1981.

www.manaraa.com

149

[3] Lothar Borrmann and Martin Herdieckershoff. A coherency model for virtually
shared memory. In International Conference on Parallel Processing, August 1990.

[4] Dominik Gomm and Ekkart Kindler. Causality based specification and correct
ness proof of a virtually shared memory scheme. SFB-Bericht 342/6/91 B, Tech
nische Universitat Miinchen, August 1991.

[5] Dominik Gomm and Ekkart Kindler. A weakly coherent virtually shared memory
scheme: Formal specification and analysis. SFB-Bericht 342/5/91 B, Technische
Universitat Miinchen, August 1991.

[6] Herrmann Hellwagner. A survey of virtually shared memory schemes. SFB
Bericht 342/33/90 A, Technische Universitat Miinchen, December 1990.

[7] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems, 7(4):321-359, November 1989.

[8] Andreas Listl and Markus Pawlowski. Parallel cache management of RDBMS.
SFB-Bericht 342/18/92 A, Techriische Universitat Miinchen, August 1992.

[9] Wolfgang Reisig. Petri Nets, EATCS Monographs on Theoretical Computer Sci
ence, volume 4. Springer-Verlag, 1985.

[10] Wolfgang Reisig. Petri nets and algebraic specifications. Theoretical Computer
Science, 80:1-34, May 1991.

[ll] A.J. Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, Septem
ber 1982.

www.manaraa.com

Object- and Memory-Management Architecture
- A Concept for Open, Object-Oriented Operating Systems -

JUrgen KleinOder
kleinoeder@informatik.uni-erlangen.de

University of Erlangen-NUrnberg
IMMD 4, Martensstr. 1

D-W8520 Erlangen, Germany

Abstract. Object- and memory management are central components of an
operating system for an object-oriented system. This paper describes the
functionality of the components object store, object cache and object space
and the perspectives resulting from this model for an object- and memory
management. If the operating system itself is designed in an object-oriented
manner, the question is how to manage the operating system objects. The an
swer is a hierarchical structure, which will be explained with the example ob
ject-store. The possibility to provide objects with operating system function
ality within the scope of an application leads to an open operating system ar
chitecture. The interaction between application system and operating system
may result in reflective and recursive relations between objects.

1 Introduction

File system and memory management are two important elements of traditional op
erating systems. The concept of persistent objects makes a file system in an operat
ing system for object-oriented applications obsolete - a conventional file can be
substituted by a persistent object with methods like read, write and seek. The file
system is replaced by the object management. Objects have to be stored on disk stor
age like ordinary files, but at execution time, they have to exist in main memory,
too. Thus, object- and memory management are important parts of an operating sys
tem for an object-oriented system.

Object management and memory management of an object-oriented operating
system are implemented with objects - which themselves have to be managed. A
layered construction of the operating system will be proposed to avoid the cycle in
this argumentation. In addition, such a system offers a simple possibility for adding
enhancements and modifications: it is possible to instantiate objects which imple
ment the functionality of an object management and which manage application ob
jects. Furthermore, the propagating of specific object-interfaces in lower operating
system layers may make it possible to influence algorithms and strategies of the op
erating system. Operating systems, being enhanceable or adaptable for the needs of
specific applications, are called open operating systems.

Object- and memory management are arranged into the components secondary
storage, main memory management and organization o/virtual address spaces. Sec
ondary storage is used as object store while main memory serves as cache for those
parts, which are actually needed for the execution (object cache). To be able to ex-

www.manaraa.com

151

ecute an application, the objects have to be mapped into virtual address spaces (ob
ject spaces).

Object store and object cache may be placed on different nodes in a distributed
system. Moving objects between different object caches is imaginable and may be
a basis for object migration mechanisms.

New administration strategies, protection mechanisms, support for fault toler
ance etc. may be added to a system by instantiation of new object stores, object
caches or object spaces.

The introduced object- and memory architecture is a model for operating system
components, built according to the PM system architecture. Within the PM project
at the department of computer science (IMMD IV) of the University Erlangen-Nu
ernberg we develop foundations of object-oriented operating systems and applica
tions in distributed systems. The PM system architecture deals with the structure of
object-oriented operating systems being adaptable to special needs of applications
and to hardware architectures.

Chapter 2 will give a short introduction into the two main parts of the PM project:
PM object model and PM system architecture. Chapter 3 reviews aspects of memory
management structuring as it can be found in existing traditional and modern oper
ating systems. The organization of the management of secondary storage, main
memory and virtual address spaces as well as the tasks of these operating system
components, are outlined in chapter 4. How these concepts may be structured ac
cording to the PM system architecture is demonstrated by an example in chapter 5.
The paper ends with a short note about a prototype implementation, a conclusion
and some remarks about topics to be investigated in the future.

2 The PM Project - An Overview

Within the PM Project we examine object-oriented structuring and programming of
operating systems and applications for distributed systems. The topics PM object
model - an object-oriented programming model for distributed systems - and PM
system architecture - structuring of open, object-oriented operating systems - ac
tually form the two focal points of our project. The work is part of the project B2
"Design and Implementation of an Hardware-Architecture- and Application-Class
Adaptable Multiprocessor-Operating-System" of the Sonderforschungsbereich 182
"Multiprocessor- and Network-Configurations".

2.1 PM Object Model

The following topics are actually treated within the framework PM object model:

• Structuring Mechanisms/or a programming language, which allow a separated
description of types and classes to elaborate the differences between the de
scription of object properties and interfaces and the implementation of such ob
jects. Furthermore the concept of inheritance is reduced to aggregation by which
improvements in the cases of dynamic object replacement and orthogonal dis
tribution of objects have been achieved [6].

www.manaraa.com

152

• Configuration - To achieve a high degree of reusability it is not desirable to
bring into the programming phase of classes information about the kind of rela
tionships between objects and their distribution in the scope of one application.
The relations between objects and the distribution of the objects should be de
scribed in a separate step - the configuration of an application. A separate con
figuration language has been developed to achieve this [5] .

• Synchronization - Concurrency within objects is regarded as a fundamental
concept of the PM object model. The works on the topic synchronization deal
with the problem of how to separate the implementation of the synchronization
and the implementation of the classes - again with the aim to avoid restriction
of reusability wherever possible [8].

2.2 PM System Architecture

The structuring-concepts, offered by an object-oriented programming model, are
very helpful in designing an operating system, but are not sufficient to bring order
into the complexity of such a software system - additional structuring guidelines
are needed.

The PM system architecture describes the construction of an operating- and run
time support system by the means of meta-layers and the interfaces between an ap
plication system and meta-system.

By the construction with several meta-layers the abstractions of the programming
model are developed step by step. The power of the abstractions is increased from
layer to layer. The PM operating system layers are programmed based on the PM
object model [7]. Each layer can be regarded as an application layer in the sense of
the object model, where a subset of the abstractions of the object model are avail
able, but are partly less powerful. The underlaying layer - implementing theses ab
stractions - is called meta-lay
er (Fig. 2.1). The implemented
abstractions are called meta-ab
stractions [16] (see also the
meta-space concepts in Apertos
I Muse [12], [13], [14], [15]).
From the standpoint of an appli
cation object, the objects within
the meta-layer are meta-objects.
The level of abstraction for pro
gramming operating-system
mechanisms increases, accord
ing to the position of the pro
gramming in this meta-stratifi
cation. In this way programming

;';'~=jIIIJ~==52'tr"7 application layer B

Fig. 2.1

(= meta-layer for A)
with sets 01 meta·
objects for X and V

meta· layer for B
(- meta-meta·layer
for object A)

Application layers and meta-layers

comfort is improved and adaptation: enhancement and maintenance of operating
system software becomes easier.

Based upon a complete implementation of all abstractions of the PM object mod
el, it is possible to realize objects which implement improvements of this object

www.manaraa.com

153

model or which implement a run-time support system for a totally different pro
gramming model. Such objects form a new meta-layer for a new application layer.
The operating system becomes expandable this way (Fig. 2.2).

A common PM object model for application layer and meta-layer - although
with restrictions within the meta-layer - makes the interfaces inside the meta-layer
available for the objects at the application layer (Fig. 2.2). By this, the possibility

enhanced application layer E

application layer-
objects X and Yare implemented
w~hin object model 0

meta·layer which provides a
complete implementation of all
abstractions of an object model 0

object A is implemented
within Object Model E

object Y implements an
enhanced abstraction
lor an object model E

~
interface 01 object M is
accessible lor
application-object Y

Fig. 2.2 Application-specific meta-layer and open meta-layer-interface

for applying application specific modifications to the meta-system - and thus to the
operating system - can be provided. The operating system becomes an open Sys
tem.

Object-oriented structuring, meta-layering and the concept of an open operating
system, where operating-system objects are protected by the means of the invoca
tion interfaces and not by incompatible interfaces, are the essence of general pur
pose operating systems, which will be adaptable both to application demands and to
different hardware architectures.

Two special cases of interaction between application system and meta-system
have to be emphasized: Reflection - an application object communicates with its
meta-object and thus influences its own implementation .- and meta-recursion -
an object uses an abstraction which it implements itself.

3 Memory-Management Architectures

3.1 Traditional Operating Systems and Micro-Kernels

For traditional operating systems, the tasks of memory management can be grouped
into three categories:

• Secondary storage (normally realized by file systems and swap spaces)
• Main memory management

www.manaraa.com

154

• Management of virtual address spaces (often joined tightly with the notion of a
process)

In modem operating systems designed for high portability (e. g. MACH [10] or
Chorus [2]), one has to distinguish within a memory management system between
an architecture-dependent part, which should be as small as possible, and an archi
tecture-independent part.

Furthermore in micro-kernel architectures there exists a kernel-predefined part of
the memory management system and optionally additional components implement
ed in application space (e. g. external pagers in MACH [11]). External memory
management modules are much easier exchanged or adapted to special demands of
applications.

A further criterion for classifying memory management architectures is the co
operation between main memory and secondary storage. A concept, widely distrib
uted in older operating systems, is swapping: Pages or segments of main memory
are transferred to swap space if main memory runs short. Newer operating systems
consider the main memory as cache for data stored on secondary storage. Generally
all data needed for the execution of an application is placed on secondary storage
and is transferred, as needed, to main memory at execution time. It is shifted back
to its place on secondary storage once the main memory runs short or the execution
terminates (file mapping concept).

3.2 Object-Oriented Operating Systems

Object-oriented systems allow further simplifications. Applications consist of a set
of cooperating objects. Some of these objects should outlive the execution of the ap
plication - they are called persistent objects. Persistent objects make the notion of
a file obsolete. A traditional file is a normal persistent object with methods like
read, write or seek. The part of the file system within the operating system is sub
stituted by the management of persistent objects - the object store.

The concept of a virtual address space is not much different from such a concept
in traditional operating systems. In some systems it is separated from the notion of
activity - the thread concept (e. g. in Clouds [3]) in contradiction to systems like
UNIX, where a process is the unification of a thread and a virtual address space.

The cooperation between main memory management and object store can be
grouped into two categories:

• Persistent objects are deactivated, frozen and transferred to the object store.
Normally this is achieved by explicit statements in the users program (see e. g.
Arjuna [4]) .

• Main memory is considered as cache for objects which are placed in an object
store.

www.manaraa.com

155

3.3 Conclusion

The aspects of different memory management systems mentioned in the above sec
tions can be combined to a horizontal and vertical structuring:

• Horizontal division:
- Secondary storage management
- Main memory management
- Management of virtual address spaces

• Vertical division:
- Architecture-independent components (as few as possible)
- Architecture-independent management
- Programming model dependent interfaces (e. g. to support the notion of an

object)

4 Structure of the PM Object- and Memory Management

This chapter describes abstractions for the three components identified in the hori
zontal division in the previous section. How important it can be to enhance or mod
ify such operating system mechanisms will be demonstrated by examples of very
different demands from applications. An implementation of theses abstractions can
serve as an operating- and run-time support system for an object-oriented program
ming model, like the PM object model. Besides this, it will be possible to support
other programming models or emulations of other operating systems, based upon
the described mechanisms.

4.1 Object Store

In the phase of programming and configuring objects, demands for the storage man
agement of these objects are defined as well. Organization and storage of objects
should be handled according to these demands and should not be influenced by de
mands coming out of the hardware architecture or the execution environment of the
application (e. g. a distribution configuration for the objects of the application).

Object stores are introduced for accomplishing the described tasks in a PM sys
tem. The functionality of an object store covers the following topics:

• Management and storage of classes, instances and their states in a certain qual
ity for a certain or uncertain time period.

• Management of object groups which have been linked statically at compile time
(called system objects or distribution units).

• Creation of object groups out of single objects and/or other object groups ac
cording to certain criteria.

• Management and interpretation of attributes and management directives (con
figuration, protection demands, execution experiences, statistic data, etc.) of
objects and object groups, which describe instructions for the object storage.

www.manaraa.com

156

• Management of attributes and management directives for the organization of the
mapping of objects or object groups into an execution environment and for the
execution itself, but without interpreting them.

Besides these objectmodel-oriented functionalities, object stores have to imple
ment mechanisms, known from base layers of file systems in traditional operating
systems:

• Buffering in- and output
• Management of secondary storage
• Control of the disk-hardware

The specific demands for object store functionality may be very different for var
ious applications:

• fast storage
• stable storage
• long term storage
• short term storage
• architecture-independent storage-format
• efficient in- and output of large amounts of data
• efficient in- and output and storage-utilization for small data-units
• special protection-mechanisms
• no protection-mechanisms

These examples give distinct illustrations for the reason of demanding that an ad
aptation to the individual needs of an application has to be made possible. Often the
particular criteria are not compatible and it is necessary to make compromises -
however such compromises often have to be very different for different demands.

4.2 Object Space and Application Space

The organization of objects of an application inside object stores is not proper for a
concrete execution of the application. Data may not be available in the main mem
ory of a node of the distributed system and the execution of operations and the ad
dressing of data by a processor require mapping into a virtual address space of the
node of the processor.

Additionally, if there is not just a single node but a distributed system available
for the execution of an application, it will be necessary to plan and coordinate the
distribution of the application objects within that distributed system. The object
store defines a location for each object. These predefined locations of several coop
erating objects are not necessarily compatible with the criteria
given for an efficient execution under consideration of all directives (like protec

tion, configuration load balancing, etc.).
Thus an execution environment is necessary, which allows to organize all objects

of an application in a manner which is proper for an optimal execution. Tasks of
such an execution environment may be, among others:

www.manaraa.com

157

• Representation of objects in a format appropriate to the demands of the execu
tion control allowing a highly efficient execution.

• Organization of resources and objects in a manner guaranteeing that all direc
tives made about object relationships (e. g. about protection of the objects) are
met. Such directives may be stored in the object store together with the objects.

• Providing mechanisms to support method invocations between objects which
have not already been bound at compilation time.

The most common abstraction of such an environment is called an application
space. Application spaces are location-transparent things which may accommodate
objects of applications. Configuration-attributes of such objects give directives to
an application space. These directives explain how to distribute the objects to node
specific object spaces which build an address- and protection-spaces.

The main task of an application space is the planning and coordination of the ob
ject-distribution during the execution-time of the application. The basis for these
decisions are the configuration information and protection demands of the applica
tion objects and data; determined by the operating system at execution time.

Thus, an application space has to deal with the following topics:

• Creation of object spaces
• Finding the object stores of application objects
• Finding and - if necessary - creating object caches (see section 4.3) for ap

plication objects
• Run-time-control for an application

- Which objects are mapped into which object spaces?
- Initiation of object-migration because of dynamic reconfiguration- or load

balancing mechanisms

Object spaces can be considered as an abstraction of virtual address spaces. In
side an object space, application objects are supplied with run-time support which
is specific to the programming-environment.

Examples for such run-time support are:

• Dynamic binding for local method invocations
• Forwarding of non-local method invocations by RPC-mechanisms
• Transformation and forwarding of instructions of the programming environment

for the operating- and run-time support system (checkpoints, transaction results,
instructions to initiate object migration)

• Dynamic loading of target-objects in case of a method invocation
• Supervising of local method invocations for certain objects

It is imaginable to have even different object- and application spaces, depending
on the hardware architecture and the environment needed for a certain application
- some examples:

www.manaraa.com

158

• Forward planning of the mapping of objects into object spaces to avoid fault sit
uations in the case of method invocations

- for applications whose distribution can be statically ascertained and which
do not need dynamic changes of its distribution during execution time

- for hardware-architectures, which do not support an efficient trap-handling
(e. g. several of the modem RISC-Processors [1])

• Lazy evaluation techniques for avoiding unnecessary mapping of objects into
object spaces in the case of dynamic object-migration during execution time

- for applications whose object-distribution can not be statically ascertained
- for hardware-architectures, which support an efficient trap-handling

Thus, it should be possible to have different realizations of object space and ap
plication space, depending on the needs of the respective application.

4.3 Object Cache

Application space and object space are only responsible for the mapping of objects
into nodes and then into regions of virtual address spaces of those nodes. They are
not responsible for transferring and positioning the objects into the main memory
of the respective node. Of course, an execution of operations of objects is only pos
sible, if the code and data are available in the main memory and addressable by the
processor.

Mechanisms to manage the main memory of a node, for transferring objects be
tween main memory and object store and for the supply of information, needed for
a valid mapping within an object space are still missing.

The cooperation between main memory management and object store should be
realized according to the file mapping concept (see section 3.1). Thus, the main
memory acts as a cache for the object store and that is why it is called object cache.
As in all page- or segment-oriented memory-architectures, it is possible to cache ob
ject data in units of segments or pages - so it is not necessary to keep all objects
of an application completely inside the object cache during the whole execution
time.

An object cache is not bound to a specific application. Its most important tasks
include the following topics:

• The guarantee of the protection attributes, which are stored in the object store
together with the object (Which object spaces are allowed to map the object?)

• Caching of often-needed management data of the object to reduce the accesses
to the object store and to improve execution time

• Mapping of objects into object spaces
• Update of object-images in the object stores
• In- and output of objects or parts of objects between main memory and object

stores

Especially to be able to adapt the cache-algorithms to special properties of object
or object-data (e. g. large, coherent data-regions for images), it can be advantageous

www.manaraa.com

159

to have different implementations of object caches, adapted to the specific proper
ties of the applications (different paging-strategies, larger blocks for I/O, etc.).

4.4 Conclusion and Perspectives of the Model

With the PM object- and memory management, objects are created and stored into
object stores. To be able to invoke methods of an object during the execution of an
application, objects are mapped into object spaces. Real addressing of object-data
by the means of a processor-instruction is only possible if the data is available in
main memory of the respective node. Main memory acts as cache for object data in
an object store. (Fig. 4.1)

Object Spaces Object Cache Object Store

Fig. 4.1 Object store, object cache and object spaces - overview

While object cache and object space always have to reside on the same node (col
location relationship, see [5]), the object store may reside on a different node within
the distributed system.
It is imaginable to cache objects in several object caches on different nodes of the
distributed system. This can be seen as a realization of distributed shared memory
on the basis of objects. Of course it will be necessary to run cache-coherence-pro
tocols between such object caches to avoid inconsistent object-states. Besides the
caching of an object into several caches it may also be possible to move objects be
tween caches on different nodes. This is equivalent to an object-migration at run
time and may be a basis for the implementation of dynamic load-balancing mecha
nisms. Mapping of an object into several object spaces is equivalent to the concept
of shared memory in traditional operating systems. (Fig. 4.2)

These outlined examples demonstrate how a lot of operating system mechanisms
for distributed systems can be covered conceptionally with the introduced model for
an object- and memory management system.

www.manaraa.com

Node B

160

:::::::::: : :::: ::~: : .::®
Object Spaces Object Caches Object Stores

Fig. 4.2 Caching of an object in two object caches and
mapping of an object into two object spaces

5 Construction of the PM Object- and Memory Management
within the PM System Architecture

The structure of object store, object cache and object space described above corre
sponds on the whole to horizontal division of a memory management, as described
in section 3.3. The PM system architecture (see section 2.2) defines guidelines of
how to build such components in an object oriented manner. This will be illustrated
in the following by the example "object store".

To express it simply: an object store is a meta-object, which is capable of storing
application objects. Analogous of this concept, an object cache is a meta-object,
which is able to cache objects. In addition, an object space is a meta-object which
acts as an execution environment for objects. These meta-objects are a part of an
object-oriented constructed operating system.

S.l Hierarchical Meta·Systems - Example Object Store

Naturally the question arises of how, for instance, the object object store is stored.
As objects can only be stored in object stores, an object store - this time an object
of the next lower meta-layer - is needed to accomplish this task. As already men
tioned in section 2.2, the power of the abstractions should decrease, the lower the
meta-layer is in which it is implemented. In the case of an object store this can
mean, for instance, that there are no protection mechanisms implemented or that ob
jects inside such an object space are not allowed to change their size dynamically.
Even this simpler object store can be implemented as an object and it is stored in an
even simpler object store - a meta-object in the next lower meta-layer (Fig. 5.1).

www.manaraa.com

While all the higher object stores
are realized as architecture-indepen
dent objects, it is imaginable to have a
lowest object store which implements
the architecture-dependent functions
and which is implemented outside the
object-oriented programming model.
However, although it is able to store
objects and has an interface like an or
dinary object, it is not really an object
- and thus it does not need to be
stored in an object store. Instead it may
come into existence during the boot
phase of the system.

The example object store shows
how operating system components can
be constructed by using the object-ori
ented paradigm. It also shows how the
abstractions provided by the operating
system for the object-oriented pro
gramming model are already used for
the operating system objects them
selves - even if with reduced func-

161

Fig. 5.1

lower
meta·layer

Example of a meta·hierar
chy of object-stores

tionality. The number of meta-layers an operating system will have is not fixed. The
number can be different, even between applications on the same node. It is possible
to create an object, within the context of an application, which fulfills the function
ality of an object store. Other objects of the same application may be stored in that
object store - this means, that an additional meta-layer exists for that application.
Just like this the number of meta-layers may be different for different function
groups of the operating system.

The structuring of memory management systems, as described in section 3.3, can
be adopted only with restrictions. Of course it is desirable to separate architecture
dependent and architecture-independent parts of the implementation. But to be able
to implement the operating system itself by using an object-oriented programming
model, it is necessary to have it supported already by the lowest layer of the oper-
ating system.

5.2 Open Operating System Architecture

As it has already been mentioned in section 5.1, it is possible to create objects with
in the context of an application, which do offer operating system functionality to
other objects of that application. In this way, the operating system can be adapted
to special demands of certain applications without interfering with other applica
tions. Thus, the operating system is hierarchically expandable (Fig. 5.2).
As application objects and operating system objects can be implemented by using
the same object-oriented programming model, it is possible for application objects

www.manaraa.com

to invoke methods of objects of
the operating system - under the
condition that the application ob
ject has a reference for the operat
ing system object. With such a
method-invocation, the applica
tion object may transfer referenc
es to those application objects
which may be used by the operat
ing system object to realize its
services - if it is programmed to
do so. Thus, the used application
objects serve to realize operating
system functionality - they be
come indirect parts of the operat
ing system (Fig. 5.3).

The border between applica
tion system and operating system
fades away in this way. The pro
tection of the operating system is
no longer achieved by encapsulat
ing it into a kernel but by a pro
tected method-invocation and by
not giving away references to op
erating system objects to unautho
rized entities.

5.3 Reflection

162

/P / enhanced
~ application layer

~ . ~ / application

/~~ layer

. .

Fig. 5.2 Enhancement of the operating
system by providing objects with
operating system functionality at
the application layer

object-interaction
by method-invocation

application
layer

meta-layer

Fig. 5.3 Interaction between application objects
and operating system objects

In a system in which application objects and operating system objects may interact
the possibility arises that an application object invokes methods of an operating sys
tem object, which implements just that application object - and is thus a meta-ob
ject.

This would mean, given the example of the object store, that an object interacts
with its own object store. In the context of such an interaction the object can give
directives to change its own storage structure - for instance by a migration into a
different object store which implements redundant storage. As an extreme example
the application object would also be able to delete itself.

Interaction with the meta-system - that means with the actual implementation
- is called Reflection (see also [9] or [7]).

In systems which allow interactions between application objects and meta-ob
jects, reflection is not an additionally introduced mechanism but implicitly avail
able. The example above already suggests which consequences can arise from un-

www.manaraa.com

163

controlled use of reflection. Therefore, the possibility for an explicit description
method is demanded for the PM system to be able to describe the use of reflection
within an application.

5.4 Meta-Recursion

Another interesting effect arises if cycles result out of the interaction between an
object and its meta-system. This means an object becomes its own meta-object. Giv
en again the example of the object store: An object with the functionality of an ob
ject store is created in the context of an application. Subsequently this object con
tacts its object store and initiates its migration into another object store - and pass
es its own reference as target-object-store-reference. The result would be that the
object will manage itself afterwards. All this may not be critical at execution time,
as long as the object is cached in an object cache. It seems clear that swapping out
the object to the object store will have undesirable consequences. This would be
comparable to the situation arising in a traditional operating system if the part which
is responsible for paging were to be paged out.

The details of how to use meta-reflection in operating system programming have
not been examined, yet.

6 Prototype-Implementation

We have developed a prototype of the components object store, object cache and ob
ject space based on MACH and have gained first experience with the proposed mod
el. The prototype allows storage of objects, dynamic mapping in one or several ob
ject spaces and migration between object spaces. The object cache is implemented
as external pager to the MACH kernel and the object store uses normal files to store
its data.

To support objects being dynamically mapped into several object spaces, code
and data have to be position-independent. Furthermore, special glue-code for meth
od-invocations is needed. The first simple test-applications were generated by mod
ifying the assembler-code. To be able to run larger applications we are currently de
veloping a modified C-compiler to generate appropriate executables.

7 Conclusion and Future Work

We proposed a model of an architecture for an object- and memory management for
an object-oriented operating system. The components object store, object cache and
object space form abstractions for the management of secondary storage, main
memory and virtual address spaces, as it can be found in traditional operating sys
tems.

We have outlined how it is possible to realize mechanisms like distributed shared
memory, shared memory and object-migration on the basis of these abstractions.

By realizing the different components as hierarchical meta-systems, it will be
possible to increase programming comfort for the implementation of large parts of

www.manaraa.com

164

the operating system functions because even if the abstractions are not fully devel
oped in lower layers of the operating system, the implementation can be still done
on the basis of an object-oriented programming model and its abstractions. In con
trast to this, the implementation of most other operating systems has to be done on
the bare hardware.

In future work reflection and meta-recursion will be treated in more detail. Very
importantly the description of reflective or meta-recursive relations between objects
by constructs of the programming model has to be investigated.

Through the possibility of bringing new meta-objects into the system a new fla
vor of relationship between objects has come into being: one object implements the
state or the behavior of another. Existing protection mechanisms cover only the con
trol of normal object-relationships (one object invokes a method of another). Con
cepts which answer, for instance, the question "which object cache may cache which
objects?" are not yet known. Future work in the PM project will try to give an an
swer to this problem.

References

1. Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D.
Lazowska, "The Interaction of Architecture and Operating System Design",
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IV), pp. 108-121,
Santa Clara (CA, USA), published as SIGPLAN Notices, Vol. 26, No.4, Apr.
1991.

2. Vadim Abrossimov, Marc Rozier, and Marc Shapiro, "Generic Virtual Memory
Management for Operating System Kernels", Proceedings of the 12th ACM
Symposium on Operating Systems Principles, pp. 123-136, Litchfield Park (AZ,
USA), Dec. 1989.

3. P. Dasgupta, R. J. LeBlanc, M. Ahamed and U. Ramachandran, "The CLOUDS
Distributed Operating System", IEEE Computer, Apr. 1991.

4. G. N. Dixon, G. D. Parrington, S. K. Shrivastava, and S. M. Wheater, "The
Treatment of Persistent Objects in Arjuna", Proceedings of ECOOP '89, the
Third European Conference on Object-Oriented Programming, pp. 169-189,
Ed. S. Cook, Cambridge University Press, Nottingham (UK), Jul. 1989.

5. Michael Fliustle, An Orthogonal Distribution-Language for Uniform Object
Oriented Laguages, Internal Report IV-16/92, University Erlangen-Nuernberg:
IMMD IV, Dec. 1992.

6. Franz J. Hauck, Typisierte Vererbung, modelliert durch Aggregation, Internal
Report IV-15/92, University Erlangen-Nuernberg: IMMD IV, Nov. 1992.

7. Gregor Kiczales, Jim des Revieres, and Daniel G. Bobrow, The Art of the
Metaobject Protocol, MIT Press, 1991.

8. Rainer Pruy, Cooperative Concurrency Control, Internal Report IV-IB/92,
University Erlangen-Nuernberg: IMMD IV, Nov. 1992.

www.manaraa.com

165

9. Ramana Rao, "Implementational Reflection in Silica", Proceedings of ECOOP
'91, the Fifth European Conference on Object-Oriented Programming, pp. 251-
267, Geneva (Switzerland), Ed. P. America, Lecture Notes in Computer Science
No. 512, Springer-Verlag, Jul. 1991.

10. Richard F. Rashid, Avadis Tevanian, Jr., Michael Wayne Young, David B.
Golub, Robert V. Baron, David L. Black, William Bolosky, and J. Chew,
"Machine-Independent Virtual Memory Management for Paged Uniprocessor
and Multiprocessor Architectures", IEEE Transactions on Computers, Aug.
1988.

11. Avadis Tevanian, Jr., Architecture-Independent Virtual Memory Management
for Parallel and Distributed Environments, PhD thesis, Technical Report CMU
CS-88-106, School of Computer Science, Carnegie Mellon University, Dec.
1987

12. Yasuhiko Yokote, "The Apertos Reflective Operating System: The Concept and
Its Implementation", OOPSLA '92 - Conference Proceedings, pp. 414-434,
Vancouver (Be, Canada), published as SIGPLAN Notices, Vol. 27, No. 10, Oct.
1992.

13. Yasuhiko Yokote, Atsushi Mitsuzawa, Nobuhisa Fujinami, and Mario Tokoro,
"Reflective Object Management in the Muse Operating System", Proceedings
of the 1991 International Workshop on Object-Orientation in Operating
Systems, IEEE, Oct. 1991.

14. Yasuhiko Yokote, Fumio Teraoka, Atsushi Mitsuzawa, Nobuhisa Fujinami, and
Mario Tokoro, "The Muse Object Architecture: A New Operating System
Structuring Concept", Operating Systems Review, Vol. 25, No.2, Apr. 1991.

15. Yasuhiko Yokote, Fumio Teraoka, Mario Tokoro, "A Reflective Architecture for
an Object-Oriented Distributed Operating System", Proceedings of ECOOP
'89, the Third European Conference on Object-Oriented Programming, pp. 89-
106, Ed. S. Cook, Cambridge University Press, Nottingham (UK), Jul. 1989.

16. Peter Wegner, "Concepts and Paradigms of Object-Oriented Programming",
ACM OOPS Messenger, No.1, pp. 8-84, Jul. 1990.

www.manaraa.com

An Orthogonal Distribution Language
for Uniform Object-Oriented Languages

Michael Fllustle
faust@informatik.uni-erlangen.de

University of Erlangen-NUrnberg
IMMD4, MartensstraSe 1

D-W 8520 Erlangen, Germany

Abstract. On one side the complexity of the design of distributed application
systems is usually reduced significantly by using a distributed programming
model that abstracts from the actual distribution and maybe even from the
actual decomposition of the application. On the other side the developer
needs to express the static and dynamic cooperation properties of the distrib
uted application and therefore needs to control its decomposition and distri
bution.

An orthogonal distribution language (ODL) is presented. It allows the de
veloper to independently describe and adapt the decomposition and distribu
tion of an application written in a uniform object-oriented and distribution
transparent language independently; i.e. without affecting the semantics of
the application.

1 Introduction

A distributed application is a system that consists of cooperating components which
run on the nodes of a distributed computer system. The distribution of the applica
tion is defined by the decomposition of the application into distributable units and
their initial and dynamic assignment to the computing nodes; i.e. the distribution of
the units.

A distributed programming model must abstract from the actual distribution of
the application to reduce the programming complexity and to allow for reusability
and optimization, which can then be orthogonal; i.e. the optimization does not af
fect the semantics of the application. This orthogonal adaptation of the distribution
for optimization requires a separate programming language, an orthogonal distribu
tion language. The decomposition of the application into distribution units, their
initial distribution state and their distribution behavior can then be described and
adapted to the requirements.

The need for such an orthogonal distribution language that should complement
the distribution transparent programming model of the distributed operating system
LOCUS has already been recognized by Popek and Walker (from [17]):

"One can think of the set offunctions by which the distributed system
provides service to applications as an effect language. { ... J We argue
that a separate optimization language should be created, orthogonal
to the effect language. The optimization language is semantics/ree, in

www.manaraa.com

167

the sense that whatever is stated in the optimization language cannot
effect the outcome of a program; i.e., cannot change the result of any
statement or series of statements in the effect language. The optimiza
tion language permits one to determine the location of resources, re
quest that the system move a resource, etc." [Boldface not in the orig
inal]

Uniform object-oriented programming languages like Smalltalk [9] and Emerald
[2] use only one kind of object definition. they minimalize the restrictions on the
distribution, more specifically the decomposition of an application: The objects de
fine the minimal decomposition of the application. They are therefore an ideal basis
for applying an orthogonal distribution language.

The distribution language can then be used for statically optimizing the imple
mentation of objects and for dynamically optimizing their cooperation. To make this
task tractable for the programmer parts of the description must be inferred from
analysis or monitoring of the application.

Chapter 2 discusses the requirements for the programming language and alterna
tives for the realization of a distribution language. The major aspects of the orthog
onal distribution language are presented in chapter 3.

2 Describing the Distribution of an Application

The distribution description of an application defines the initial state and the dy
namic behavior of a distribution system. Its initial state defines their initial distri
bution. Its behavior prescribes the change of its state. The distribution system reacts
to events of the application (local events) or of the entire distributed system (global
events). An actual distribution results (eventually) in an assignment to loci, like
nodes, that are defined by a run-time system (RTS). This is a simple, but very useful
generalization of the concept of distribution.

2.1 Goals

Two central goals for a distribution system are considered:

• "Optimization"
The cooperation of objects solving a common task should be improved; e.g. the
communication and management-overhead should be reduced through colloca
tion (clustering) as well as the parallel execution of tasks should be enabled
through dislocation. The run-time system can define additional kinds of loci that
allow for optimization; e.g. clustering for transfer operations in virtual memory
systems [22] .

• Functional properties
In a distributed computer system nodes are assumed to fail independently. The
assignment of objects to nodes therefore affects their failure properties. The run

www.manaraa.com

168

time system can define additional kinds of loci that allow the expression of ad
ditional orthogonal functional properties; e.g. the encapsulation of a set of ob
jects.

2.2 The Programming Language

An explicit orthogonal distribution description can only be used when the program
ming language is logically distributed ([3]) and therefore defines distributable units,
but is distribution transparent, i.e. it abstracts from their concrete distribution (dis
tribution transparency). The definition of these units implies restrictions on the pos
sible decompositions of the application. To minimalize these restrictions the pro
gramming language should only allow the description of a minimal fine-grained de
composition that can be coarsened by the distribution description.

Uniform object-oriented languages like Smalltalk [9], Self [21] and Emerald [2]
satisfy these requirements: an object, as a set of variables and operations, forms a
minimal distribution unit and there is only one kind of object. Except the handling
of errors that result from a distributed execution, these programming languages can
be implemented as distributed languages without sacrificing distribution transpar
ency and efficiency ([13]).

2.3 Integrating Distribution and Programming Language

An explicit distribution description can be achieved by using two approaches: an ex
tension to the programming language or a separate distribution language. Most dis
tributed programming languages provide some of the required extensions to de
scribe the distribution; like constructs for the decomposition and the explicit assign
ment to nodes, even though the distribution transparency of the programming
language allows for an orthogonal, and therefore adaptable, description in a separate
distribution language.

The decision for the second approach is motivated by contrasting the effects of
both approaches on the following areas:

• Distribution transparency of the programming language
Combined approach: The distribution becomes part of the state of the applica
tion. Therefore distribution transparency canno longer be guaranteed.
Separate approach: The distribution transparency is not affected .

• Reusability of classes
Combined approach: Classes can be reused by instantion or inheritance. Both
kinds of reuse are hindered. To reuse a class it not only must satisfy the require
ments with respect to its functional behavior but with respect to its distribution
behavior as well. When inheriting from a base class, the subclass must now con
sider the distribution properties of its parent class which leads to an undesirably
strong coupling.
Separate approach: Different distribution descriptions can be assigned to ob
jects of the same class or to objects of a subclass, depending on their use. The
reusability of classes is not compromised.

www.manaraa.com

169

• Adaptability of the distribution description
Combined approach: The distribution description is given as part of the class
description. An extension of this description requires changes to the class. Oth
erwise only parts of the existing description can be chosen; e.g. by parameter
izing.
Separate approach: The distribution properties of an object can be adapted stat
ically and dynamically to their use in the application without access to the
source code of the classes.

• Complexity for the programmer
Combined approach: The programmer needs to know only one language. The
required extensions to the language add a moderate amount of complexity.
Separate approach: The programmer has to learn a new language with concepts
that differ substantially from those of the programming language.

• Expressiveness of the distribution language
Combined approach: The distribution description is severely limited by the con
cepts of the programming language. In an object-oriented language, for exam
ple, it is hard or impossible to describe the reaction to events.
Separate approach: The distribution system can be described in an adequate de
scription model. Only concerns for simplicity and efficiency limit the expres
siveness of the distribution language. In addition, the distribution system must
not interfere with the application: it can only monitor its state, not change it.

The approach taken to define a separate orthogonal distribution language was cho
sen for the following reasons:

• it avoids the reusability problems
• an adequate description model can be used
• it allows for an easier adaptation of the distribution description of an application

3 The Distribution Language

3.1 The Distribution Model

The distribution model forms the base for the definition of the state model of the
distribution language. It describes what kinds of loci the run-time system defines as
well as the permissible assignments to these loci. Only two kinds of loci are intro
duced whereas, in principle, any number could be used:

• nodes - The distribution on nodes can be used in two ways: to optimize and to
describe failure properties of objects; i.e. dependent or independent failure. The
following properties of nodes are assumed:

- independent failure: Nodes fail independently.
- mobility: Assignment to nodes can be changed at any time.
- unique assignment:

An object must be assigned to exactly one node at a time. Run-time systems
that allow for the transparent replication of objects, i.e. Amber [6] and the
system described in [15], are not considered.

www.manaraa.com

170

• capsules - Capsules allow for the description of the encapsulation of a set of
objects. Objects that are assigned to a capsule are protected from objects as
signed to a different capsule. This purposely resembles an address space that is
independent from the assignment to nodes.
An object can only initially be assigned to any number of capsules.

3.2 The State Model

The state model of the distribution system defines how an actual distribution is rep
resented in the distribution system. Two observations motivate the choice of the
model:

• relative distribution
The key to an abstract problem-oriented distribution description is to abstract
from the properties of the nodes and to consider them as freely exchangeable,
i.e. there are no restrictions on the mobility of objects. The assignment of ob
jects to nodes and capsules can then be described indirectly by the relative po
sition of pairs of objects. Distribution associations between pairs of objects im
ply restrictions on the assignment to nodes and capsules. A consistent set of dis
tribution associations characterizes a set of permissible assignments to nodes
and capsules. It is the task of the run-time system to choose one particular as
signment according to the goals of its global distribution system.

• distribution of potential objects
The distribution system cannot influence the creation and destruction of objects,
it can just observe it. Therefore distribution associations relate to potentially ex
isting objects. The set of the actual existing objects determines which distribu
tion associations can be effective. The set of distribution associations therefore
defines a potential relative distribution of which the effective relative distribu
tion is a subset.

This kind of a relative potential distribution offers among others two advantages
compared to a direct assignment to the loci in the run-time system:

• problem-oriented - The required distribution properties of objects can be di
rectly specified in terms of object associations, an important concept in the ob
ject-oriented paradigm [18].

• abstract - The description does not unnecessarily restrict the distribution sys
tem of the run-time system. These distribution systems can coexist.

Three kinds of relative placements of objects must be expressible: collocation, dis
location and indifference. A collocation association prescribes the assignment to a
common locus, a dislocation association prescribes the assignment to different loci
and indifference association prescribes an independent assignment. The last one is
necessary to explicitly override inferred associations. All three kinds of associa
tions must be defined for every kind of locus. here nodes and capsules. To allow for
a static optimization. mutable and immutable distribution associations must be dis
tinguishable.

www.manaraa.com

171

Conflict during creation or reversion of associations

(1) t:::::t:.::J
(2) t.~~:::t:~~~J

* collocation

e dislocation

• desired change

Conflict resolution by destruction of conflicting associations

(1) t:::::t:::J
(2) t::::;t::::J

X destruction

Fig. 3.1 Conflicts and their resolution

A relative distribution is completely determined if, between all pairs of objects
for all kinds of loci, there exists a collocation or a dislocation association. The dis
tribution associations could be used to describe distributions that are invalid in the
distribution model and therefore cannot be realized by the run-time system. A rela
tive distribution is consistent if it only describes valid distributions in the distribu
tion model and therefore satisfies the following requirements:

- The distribution associations of one kind of locus are exclusive; e.g. two objects
may not be collocated and dislocated at the same time.

- The distribution associations must be satisfiable by assigning each object to ex
actly one node. Therefore if one assumes that the associations in the transitive
closure of the collocation association are implicitly defined then they must be
consistent with the dislocation associations.

The distribution associations of capsules are immutable. Therefore changes are only
possible for node associations. Changes of an association between a pair of objects
may lead to an inconsistent relative distribution. Destruction of a distribution asso
ciation means a change from a collocation or a dislocation into an indifference as
sociation. This change always leaves the relative distribution consistent. Creation
of a distribution association means a change from an indifference association to a
collocation or dislocation association. Reversion means a change from a collocation
to a dislocation association or vice versa. The creation or reversion of a distribution
association may lead to an inconsistent relative distribution. In this case the changes
are in conflict with existing associations. A conflict can be solved by abandoning
the change or by destructing the conflicting associations. Figure 3.1 shows possible
conflicts and their resolution by destructing conflicting associations.

www.manaraa.com

172

Distribution system ot' the application

Distribution system of the run-time system

Fig. 3.2 Implementing the state model

3.3 Implementation Considerations for the State Model

immutable

mutable

collocation

dislocation

.. collocation

.... dislocation

[J
D

distribution
group

cluster

The run-time system must implement the state model described above. Cluster and
distribution groups are introduced to represent immutable and mutable collocation
associations. They could be considered as a new kind of locus to which the run-time
system assigns application objects. depending on their collocation associations.
[20] and [10] discuss the concept and possible implementations of clusters and dis
tribution groups. Figure 3.2 gives an overview of the transformation of the relative
distribution of potential objects into a direct assignment of objects to clusters. of
clusters to distributions groups and of distribution groups to nodes. This last assign
ment must respect the dislocation associations between distribution groups but it is
otherwise controlled by the run-time system. The analogous diagrams for the distri
bution on capsules have been omitted for brevity.

www.manaraa.com

173

3.4 Inferring Distribution Associations

In order to reduce the overhead of describing the distribution system of an applica
tion it is essential -at least partially- to infer the description that can then be
adapted and supplemented by an explicit description. This is only sensible for dis
tribution associations referring to nodes because protection requirements can hardly
be inferred. There are two kinds of information with respect to their collection time:

• static (a-priori) information - Static information can be used for static and dy
namic optimizations and can be gathered by

- textual analysis of the application systems code and configuration
Information valid for all possible use cases can be collected and used to heu
ristically derive distribution associations.

- monitoring of test runs of the application
The information collected can hardly be generalized when the information
is not collected in test runs for all relevant use cases. General heuristics are
hard to identify. This is mostly useful to improve and validate the explicit
distribution description .

• dynamic information - Dynamic information can be used for dynamic optimi
zation only. The information is collected by monitoring an actual run of the ap
plication. Collecting information is not always possible. It involves substantial
overhead and can hardly be used for prediction of the future behavior of objects.
This is mostly useful for long term strategies like load balancing.

For the reasons given above only the textual analysis of the application code is dis
cussed. Central to the distribution of an application is its decomposition into clus
ters through the specification of immutable collocation associations. A starting
point for this decomposition is to look for object sets that are closed with respect to
communication. In the object-oriented paradigm this translates into limitations on
the flow of object-references in the system, also known as aliasing [1]. For a static
immutable clustering of objects only invariant limitations can be considered. The
simple heuristic considered here is found in one form or the other in nearly any dis
tributed programming language: When an object only has one potential owner-ob
ject; i.e. one that owns a reference to it, then it is usually sensible to collocate them
immutably. When an object has a few potential owner-objects that are all collocated
immutably then it is again sensible to collocate the object immutably with its owner
objects. In this case a set of objects will be called an island following [12]. An Is
land can be more precisely defined as follows:

A set of objects that may use each other arbitrarily but cannot be used by objects
not in this set -except one object called gate- is called an island. An island is
called open if an object beside the gate object potentially uses an object not in the
island, otherwise it is called closed.

An open island can be constructed starting from a given gate object as follows:

www.manaraa.com

174

IL-_--external reference

closed island

Fig. 3.3 A hierarchy of islands

• An object is called private if there is only exactly one potential owner-object
during its lifetime. The transitive closure of private will be called indirect pri
vate. The gate object and all its private and indirect private objects are members
of the initial set.

• All objects that can potentially only be used by the objects of the current set are
added to the current set yielding a new set. This step is repeated until no more
objects can be added. The resulting set is the island of the gate object.

The closed island for a given gate object can be constructed by successively elimi
nating objects that potentially use objects that are not in the island. The heuristic
described above can now be used for islands: all objects in an island are collocated
immutably. An island therefore corresponds to a (potential) cluster. The islands of
an application system form a partial ordering with respect to set inclusion and define
thus a hierarchical decomposition of the application into potential clusters. Figure
3.3 shows an example of such a hierarchy of open and closed islands.

The largest islands are used as a basis for the description of the actual decompo
sition by the programmer. Refinements are necessary when objects should be work
ing on tasks in parallel or when the assumption underlying the heuristic does not
hold, e.g. an object in an open island communicates more intensely with an external
object than with the objects in its island.

3.5 Cooperations

The central goal of a dynamic distribution system is the "optimization" of the coop
eration of objects. Objects cooperate by communicating or by concurrently working
on a common task. The goal of the distribution system is to decrease the communi
cation overhead by collocating objects and to increase the parallelism by dislocating
objects.

The cooperation of a set of objects is modeled by dynamic cooperation associa
tions, or short cooperations, to keep the concepts close to the object-oriented para
digm.The lifetime of a cooperation association for a set of objects is specified in
terms of certain events in the application. The effects on the distribution are speci
fied in terms of distribution associations on these objects.

www.manaraa.com

175

It is possible to infer simple cooperation associations by an automatic textual
analysis of the application. One example is the cooperation between an exclusive
object; i.e. an object with exactly one owner-object at any time, and its current own
er-object. The effect of such a cooperation would be a mutable dynamic collocation
of both objects, following the simple heuristic described in the previous chapter. It
is not clear how further kinds of cooperations could be derived from an analysis or
from a monitoring of the dynamic behavior of the application or how their lifetime
and effects on the distribution could be inferred. A more precise description of co
operation scenarios as part of the programming language would improve the situa
tion substantially.

The description of a cooperation association must specify the creation and de
struction time, the involved objects, how to name them, the effects on the distribu
tion associations of them as well as the type of objects it is applicable to. A coop
eration class is used to describe the common properties of similar concrete cooper
ations that are then considered to be instances of this class. Cooperation classes can
be bound to type-conform objects of the application. They can determine the coop
eration this object can get involved in and therefore lastly its distribution behavior.
Several cooperation classes may be statically or dynamically bound to an object.
The description of a cooperation class consists of the following parts:

• type of the cooperation class
The type of the cooperation class determines which objects it can be used upon.
Objects of different type can observe different kinds of events. The type there
fore impacts the lifetime specification.

• lifetime specification of instances
The basic events of the application system are the creation and destruction of
bindings to variables. The lifetime of a cooperation can be described as pairs of
certain basic events; like the creation or the destruction of a binding of an object
to an instance variable, the start or end of an invocation and even the creation
or destruction of cooperations. The creation and destruction events can be made
more specific by using conditionals on the state of the involved objects.

• specification of the involved objects
The specification of a creation event not only has to determine the creation time
of the cooperation but also the objects that are involved in it and a way to name
them. An event like the begin of an invocation allows the naming of the caller,
the callee and the argument objects. An event like the creation of a cooperation
allows the naming of the objects involved in it.
The objects in a cooperation playa certain role in it. The cooperation class de
scribes all roles and how the objects actually involved are bound to them.

• specification of the distribution associations
The effects of a cooperation on the distribution associations of the role objects
must be specified. The resolution of conflicts and the acceptable migration
overhead for the creation and the maintenance of the distribution associations
must be given.

Figure 3.4 shows the most important aspects of the creation and destruction of an
instance of a cooperation class. A cooperation class bound to an object (called ini-

www.manaraa.com

f coopera Ion c ass

creation destruct.
event event

pa irs

distribution
actions

roles
I I I

~
~
~
~

binding of the
cooperafion class

to the ,.object
~
~

6
initiator object

Fig. 3.4

1

176

creation event cooperation
11" distribution
'111 actions

corresponding
destruction event roles

binding of the
involved objects

to roles

involved objects

resulting dy'namic
distribution associations

(dis- and collocations)

initiator object

Creation and destruction of a cooperation

tiator object) is instantiated if one of the creation events is observed within the ob
ject. The involved objects are bound to the roles and their distribution associations
are created appropriately. When the destruction event that corresponds to the cre
ation event is observed, all created distribution associations and the cooperation are
destroyed. An object may be involved in several cooperations at a time and may
even be their initiator.

4 Existing Approaches

Most existing distributed programming languages were created by extending an al
ready existing programming language. The description of the decomposition into
distribution units and their distribution is therefore part of the extensions made re
sulting in non-uniform distributed languages. The decomposition is achieved by ex
plcitly declaring clusters, like processor modules in Starmod [8] or guardians in Ar
gus [16], that can be assigned initially to nodes. This leads to the definition of rel
atively coarse-grain clusters that cannot be moved frequently because of the
involved overhead. Mobility therefore is only considered for load balancing.

Object-oriented programming languages suggest a more fine-grained approach to
distributed computing using mobile objects that can be migrated dynamically. Em
erald was the first fully implemented language that pursued this approach. It uses a

www.manaraa.com

177

data-flow analysis to infer clusters and provides a sort of asymmetric collocation as
sociation called attachment. Objects can be migrated as an operation on it (move)
or as part of the parameter-passing (call-by-movelcall-by-visit) [14]. Systems like
Amber [6] and [10] provide just run-time support.

MONACO [19] is an approach that allows at least a partially separated distribu
tion description for object-oriented languages. MONACO is focussing on the auto
matic inference of class-based dynamic collocation rules by monitoring test runs of
the application. Annotations in the classes are used to support this.

5 Conclusion

Developing distributed systems is a complex task. The distribution transparency of
a distributed programming language reduces the complexity significantly but pre
vents using the distribution to optimize the cooperation and to achieve functional
properties of the application. Existing approaches frequently give up distribution
transparency and therefore reusability in favor of using the distribution. The adap
tation of the distribution of an application to changes in the requirements of use or
the distributed computer system can hardly be obtained.

The approach presented avoids these problems by using a separate orthogonal
distribution language that does not compromise the distribution transparency of the
programming language and therefore does not compromise reusability.

The generalization from the distribution of objects on nodes to the distribution
on arbitrary loci, e.g. capsules, opens the possibility to describe a large number of
functional properties or static and dynamic optimizations as long as they are orthog
onal to the semantics of the application.

Currently the conceptual design of the distribution language has been completed.
Its full description can be found in [11].

References

1. Hogg, John, Lea, Doug, Wills, Alan, deCahampeaux, Dennis, Holt, Richard,
"The Geneva Convention on the Treatment of Aliasing - Followup Report on
ECOOP '91 Workshop W3: Object-Oriented Formal Methods", OOPS
Messenger, vol. 3, no. 2, pp. 11-16, Apri192.

2. Black, A., Hutchinson, N., Jul, E., Levy, H., Carter, L., "Distribution and
Abstract Types in Emerald", IEEE Transactions all Software Engineering, vol.
SE-13, no. 1, pp. 65-76, Jan. 1987.

3. Bal, H.E., Steiner, J.G., Tanenbaum, A.S., "Programming Languages for
Distributed Computing Systems", ACM Computing Surveys, vol. 21, no. 3, pp.
261-322, Sep. 1989.

4. Booch, G., Object-Oriellted Design with Applications, Benjamin/Cummings,
1990.

5. Casavant, T.L, Kuhl, J. G., "A Taxonomy of Scheduling in General-Purpose
Distributed Computing Systems", IEEE Transactions on Software Engineering,
vol. 14, no. 2, pp. 141-154, Feb. 1988.

www.manaraa.com

178

6. Chase, J.S., Amador, F.G., Lazowska, E.D., Levy, H.M., Littlefield, R.J., "The
Amber system: Parallel programming on a network of multiprocessors", Proc.
of the 12th ACM Symp. on Operating Systems Principles, ,Litchfield Park (AZ,
USA), pp. 147-158, Dec. 1989.

7. Chen, P.-S. P., "The Entity-Relationship Mode1- Toward a Unified View of
Data", ACM Transactions on Database Systems, vol. I, no. I, pp. 9-36, March
1976.

8. Cook, R.P., "*MOD-a language for distributed programming", IEEE
Transactions on Software Engineering, vol. SE-6, no. 6, pp. 563-571, Nov.
1980.

9. Goldberg, A., Robson, D., Smalltalk-80: The Language and Its Implementation,
Addison-Wesley Publishing Company, Reading, Massachusetts. 1983.

10. EI Habbash, A., Grimson, J., Hom. C., "Towards an efficient management of
objects in a distributed environment", Proc. of the Second International Symp.
on Databases in Parallel and Distributed Systems, Dublin, Ireland, 2-4 July
1990, pp. 181-190, Editors: Agrawal, R., Bell, D., IEEE Computer Soc. Pr., Los
Alamitos, CA, USA, 1990.

11. Fliustle, M., Beschreibung der Verteilung in objektorientierten Systemen;
Dissertation, Universitlit Erlangen-Nilrnberg: IMMD; 1992

12. Hogg, J., "Islands: Aliasing Protection in Object-Oriented Languages", Proc. of
the Conference on Object-Oriented Programming, Systems, Languages,
Applications, OOPSLA '91,6-11 Oct. 1991, Phoenix, Arizona, published as
ACM SIGPLAN Notices, vol. 26, no. 11, pp. 271- 285, Nov. 1991.

13. Jul, E., Levy, H., Hutchinson, N., Black, A., "Fine-Grained Mobility in the
Emerald System", ACM Transactions on Computer Systems, vol. 6, no. 1, pp.
109-133,Feb.1988.

14. Jul, E., Object Mobility in a Distributed Object-Oriented System, Ph.D. Thesis,
Technical Report 88-12-06, Department of Computer Science, University of
Washington (Seattle, WA 98195), Dec. 1988.

15. KleinlSder, 1., Objekt- und Speicherverwaltung in einer offenen,
objektorientierten Betriebssystemarchitektur, Dissertation, Universitlit
Erlangen-N1imberg: IMMD IV, 1992.

16. Liskov, B., "Distributed Programming in Argus", Communications of the ACM,
vol. 31, no. 3, pp. 300-313, March 1988.

17. Popek, G.l., Walker, B.l., The LOCUS Distributed System Architecture,
Computer Systems Series, The MIT Press, 1985.

18. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., Object
Oriented Modeling and Design, Prentice-Hall International Editions, 1991.

19. Schill, A., "Mobility control in distributed object-oriented applications", Proc.
of the Eighth Annual International Phoenix Conference on Computers and
Communications, Scottsdale, AZ, USA, 22-24 March 1989, pp.395-399, IEEE
Comput. Soc. Press, Washington, DC, USA, 1989.

20. Stankovic, J.A., Sidhu, I.S., "An Adaptive Bidding Algorithm for Processes,
Cluster, Distributed Groups", The 4th International Conference on Distributed
Computing Systems, San Fransisco, California, May 1984.

www.manaraa.com

179

21. Ungar, D., Smith, R.B., "Self: The Power of Simplicity", Proc. of the
Conference on Object-Oriented Programming: Systems, Languages,
Applications, OOPSLA '87, Orlando, Florida, published in SIGPLAN Special
Issue, vol. 22, no. 12, pp. 227-242, Dec. 1987.

22. Williams, I., Wolczko, M., Hopkins, T., "Dynamic Grouping in an Object
Oriented Virtual Memory Hierarchy", Proc. of ECOOP '87, the First European
Conference on Object-Oriented Programming, Paris, France, published as
Lecture Notes in ComputerScience, eds. Goos, G.; Hartmanis, J., vol. 276, pp.
79-88, Springer Verlag, 1987.

www.manaraa.com

Towards the Implementation
of a Uniform Object Model

Franz J. Hauck
hauck@immd4.informatik.uni-erlangen.de

University of Erlangen-NUrnberg
IMMD 4, Martensstra8e 1

D-W 8520 Erlangen, Germany

Abstract. In most cases the programming models of distributed object-ori
ented systems have a two-stage or even a three-stage object model with dif
ferent kinds of objects for values, distributable and non-distributable ob
jects. This allows an efficient implementation for at least non-distributed ob
jects, because traditional compilers can be used. This paper discusses some
aspects of the implementation of a uniform object model that does not know
of any distinction between distributable and non-distributable objects and al
lows an independent application description of the distribution of objects.

Instead of integrating distribution later into a non-distributed language
our method takes the opposite approach. For the time being a distributed ob
ject model is implemented in a general, distributed, and, of course, ineffi
cient way. With some additional information derived by user supplied decla
rations or automatically by a compiler the general implementation becomes
more and more optimized. With assertions like immutable or constantly and
initially bound objects the implementation can be optimized such that the
non-distributed case is not worse than in traditional object-oriented languag
es.

1 Introduction

Usually distributed object-oriented systems are derived from non-distributed ob
ject-oriented languages, i.e. Argus from CLU [1], Clouds from C++ - called DC ++
[2] - and from Eiffel - called Distributed Eiffel [3]. These approaches introduce a
new kind of object which is distributable, all other objects of the base language used
being non-distributable. The result is a two-stage object model with different se
mantics for each stage. The parameter-passing semantics depend on the kind of ob
ject passed, i.e. call-by-copy semantics (corresponds to call-by-value) for non-dis
tributed objects and call-by-reference for distributed objects. Often, values form
their own kind of objects resulting in a three-stage object model, e. g. in DC + +.

This is an advantage because those object models are easy and quite efficient to
implement, as the compiler of the base language can be used for all non-distributed
kinds of objects and produces efficient code as well. Distributed objects are imple
mented by stub objects, which are non-distributed objects. These are passed by call
by-copy semantics which is in fact call-by-referellce semantics for the distributed
object.

www.manaraa.com

181

The different semantics for the different kinds of objects are the great disadvan
tage of these approaches. Often the kinds of objects are fixed by their respective
classes, e.g. in Argus. There is a need for two classes, one for distributed and one
for non-distributed objects. This impairs the reuse of code and it is not easy to see
which semantics apply for a certain method call.

Another problem remains. The distribution of the objects is explicitly described
in the program, thereby also affecting reusability. Yet, distribution is orthogonal to
the programming of objects, with the exception of different failure models and dif
ferent time behavior. Thus, we require a distribution description separate from the
program description. To achieve this we need a uniform object model, as that is the
only way to abstract completely from the distribution of objects.

Emerald is one approach with a uniform object model [4], but it has no separate
description of distribution. Distribution is described inside an Emerald program
with explicit statements.

This paper shows some aspects of implementations for uniform object models
with a separate distribution description. Instead of extending a non-distributed lan
guage we choose the opposite method. In chapter 2 we introduce an object model
for arbitrarily distributed objects. There is a separate description language for dis
tribution. Chapter 3 presents a simple distributed implementation which is not very
efficient. The efficiency is improved by suitable optimizations. Different aspects of
the possible optimizations are shown. Chapter 4 contains a conclusion and ends with
an outlook on future work.

These thoughts are originated from within the PM project of the IMMD 4, Uni
versity of Erlangen-Nilmberg. The distributed object model is used there to model
distributed operating systems.

2 A Distributed Object Model

This chapter introduces a distributed uniform object model for programming dis
tributed applications or parts of operating systems. It defines objects, methods,
classes, types, and requests.

2.1 Objects and Classes

Objects are the smallest distributable entities. They have behavior and state. The be
havior is expressed with methods; operations which can be invoked by clients of an
object. The state of an object A consists of references to other objects. Object A can
be a client of all these objects and invoke any of their methods. References are
bound to variables which can be accessed by the objects' methods onlyl. A graphi
cal representation is shown in fig. 3.1. The rectangles represent objects, boxes rep
resent variables and arrows represent references from variables to objects.

1. The access from a client to a variable can be allowed by using some special meth
ods which can be derived automatically by a compiler.

www.manaraa.com

182

~ 1~ j>
Fig. 2.1 A graphical representation of objects, variables and references

With the invocation of a method an independent virtual thread of activity is cre
ated executing the code of the method. After having done all computing and sending
back the results to the client the thread of activity is destroyed. The thread of activ
ity is called a request. During the execution of a method invocation all requests are
seen as part of the state of the object which defines the method. The general param
eter-passing semantics is call-by-rejerellce. The request gets some references as pa
rameters from the client and sends back some references as a result.

Classes are defined as sets of objects with the same behavior and identical struc
ture of state. They constitute equivalence classes according to an equal relation of
state and behavior. This extensional definition does not directly correspond to the
definition of the term class in most programming languages. In a language the term
class is almost intensionally defined. Classes are directly described and their ob
jects are created from this description.

Languages like Self do not know classes as a concept of the language itself [5],
but it is possible to identify the extensionally defined classes in these languages. For
this paper it does not matter whether classes are concepts of a language or not. We
refer in the next sections to the extensionally defined term.

2.2 Types

Types are equivalence classes of classes with the same abstract behavior. In most
languages, like C++ and Eiffel, the notion of type and class is the same, [6] and [7].
These languages do not know any mechanisms to declare two classes to be of the
same type; not even when these classes are identically declared.

Type conformance is a subset relationship between types. This corresponds to the
definition of Pals berg and Schwartzbach, [8] and [9]. Type conformance is also pos
sible in C++ and Eiffel, but only by using inheritance between classes. Inheriting
classes are type-conforming to their base classes.

We propose that the notion of type is to be represented by some language con
cepts. A class2 has to decide to which type it belongs. This results in an explicit sep
aration of types and classes. It is necessary to make an explicit decision as to which
type is supported by which class, because the compiler cannot decide which abstract
behaviors are conforming.

2. Or an object (depending on if classes are defined as a language concept).

www.manaraa.com

183

2.3 Distribution

As mentioned above objects are the smallest entities for distribution. References
can point to a distributed or to a local object. The method invocation on distributed
objects is implemented by an RPC style communication. The semantics of a pro
gram is therefore independent of the possible distribution of the objects with the ex
ception of different failure models and possible run-time differences. Thus, distri
bution is described in a separate programming model based on relative properties of
distribution between the objects, called collocations and dislocations. Further infor
mation can be found in [10] and [11].

Objects can migrate arbitrarily in the system. This means that they can change
their physical location at run-time, e.g. for an optimization of the total run-time of
a program. The migration of objects is controlled by so called cooperations. These
are part of the programming model of the distribution system and can be described
there. Cooperations may dynamically create and destroy relationships of collocation
or dislocation between objects and indirectly cause object migrations - see again
[11].

3 Aspects of Implementation

One simple approach towards implementation of the described object model is ex
emplified in the following:

• Objects are implemented as continuous parts of memory containing all variables
and methods.

• Each object has a unique identification called OlD (object identifier), which has
a system-wide uniqueness.

• References to other objects are stored in variables. These references are repre
sented as aIDs.

• Method invocations are handled by a run-time system which determines the ac
tual position of an object by its aID.

An implementation like this is possible but certainly not efficient. The identifiers
need a size of 96 to 128 bits to support a world wide distributed system. A variable
needs 12 to 16 bytes of memory to store a reference. The search for objects will be
very expensive, as objects may be located anywhere. Searching is also done for of
ten used objects like integers or booleans.

It is immediately obvious that smaller identifiers would increase this efficiency.
They would need less memory and allow faster searches for objects. The best case
of an implementation of an OID is a pointer. There is no need for a search if the OlD
is a pointer to the memory space of an object. But in this case the object is not mi
gratable without restrictions, as it must be located in the same address space.

As mentioned already an efficient implementation is possible with a multi-stage
object model. Non-distributed objects are addressed by pointers and distributed ob
jects are addressed by stub objects containing a large OlD. These stub objects are
only part of the implementation. This kind of implementation should be rejected be-

www.manaraa.com

184

Fig. 3.1 Splitting the OlD

cause it cannot support a uniform object model. The following sections will show
some aspects of optimizing the addressing of objects under certain circumstances.

Generally a more efficient implementation can be achieved by using smaller rep
resentations of the OlDs. The identifiers are to be stored in variables. But a variable
is only bound to a subset of all objects during its lifetime. Thus, only the identifiers
of those objects are to be stored in that variable. One approach could be to assign
each variable a specific and different set of identifiers for all objects possibly bound
to that variable. This is disadvantageous because assigning one variable to another
is a more complex operation; the identifier of one object stored in one variable is
different from the identifier of the same object stored in another variable. Trying to
avoid all conversions of identifiers generally leads to a representation of identifiers
which is as large as the unique OlD.

Another drawback to using different identifiers for the same object is complex
identity comparisons. They are needed as user level statements or as run-time state
ments for all kinds of aliasing-detection.

3.1 Constant Collocation

When the user specifies the distribution of an application in the distribution system
there are objects which are constantly collocated; meaning their collocation rela
tionship does not change during run-time. Using this information groups of objects
can be derived which are all in a transitive collocation relationship. These groups
are called clusters [11].

A simple way of using smaller identifiers is to split the OlD into a Cluster ID
(CID) and an identification local to a cluster (LID), see fig. 3.1. Inside a cluster local
objects can be addressed by the LID only. The same objects are addressed from out
side using the full OlD. The CID allows a more efficient address resolution because
there are fewer clusters than objects in the system.

Identity comparisons are simpler, because LIDs are part of the OIDs. References
from inside a cluster assigned to variables outside are converted by simply adding
the CID part to the LID.

The LID itself can be implemented by a pointer into the continuous memory
space of a cluster. This pointer can even be an offset for some segmentation mech
anism used to implement a position-independent addressing-scheme inside a cluster.

This kind of optimization can only be used for constantly collocated objects. Mo
bile objects form a cluster of their own and can only be addressed by a full OlD.
Variables inside a cluster which can be bound to objects of their own cluster and to
objects outside of that cluster cannot use the efficient local addressing-scheme.
They have to use the full OlD address. The distinction between LID and a full OlD
would cause more overhead than the optimization of the local addressing would in
crease efficiency.

www.manaraa.com

185

~11~1
Fig. 3.2 Memory inlining of objects

3.2 Immutable Objects

Immutable objects only have constant bindings to other immutable objects. This im
plies that all their requests do not interfere. The result of a request depends only on
its parameters. A request cannot store any information in an immutable object.

Immutable objects are easily shared. Shared immutable objects can be copied and
each client can have its own copy without noticing it. The semantics of a program
stay the same with shared or with copied immutable objects. Only correct identity
comparisons between the copies must be realized. Immutable objects are candidates
for a per cluster copy. Thus, they can always be addressed by a small LID. In our
distribution system immutable objects can be collocated to two dislocated objects.
This conflict is not solvable in the case of a mutable object.

This kind of optimization is very suitable for all kinds of value objects. Previous
ly, in CLU and Emerald, values were modelled by immutable objects, [12] and [4].
There is no need to share integer values all over the system, as there can be copies
for at least each cluster.

As the identifier of an immutable object has enough information about the object
itself, there is no need to implement the object in the memory space in all cases. For
further optimizations special identifiers, called VIDs (value IDs), can be used for
binding immutable objects. These identifiers do not address certain objects (in the
implementation), they stand for them. VIDs can be made unique within the system
and thus there is no need for a conversion when assigning a reference from one clus
ter to another. The representation of a VID can be very special, e. g. for integers it
may be a bit-pattern. This bit-pattern allows for direct integer arithmetic operations.

3.3 Constantly and Initially Bound Variables

A variable is initially bound when a reference is bound at creation time. Constantly
and initially bound variables are bound at the object creation. This binding cannot
be changed. Such a situation can be used for an optimization called memory inlin
ing. The variable does not contain an identifier of the bound object but the object
itself (fig. 3.2). In the distributed object model this optimization is only possible
with an additional constantly collocated relationship between the objects.

In C++ all non-pointer variables are initially and constantly bound references. In
Eiffel these kinds of objects are called expanded objects. In both languages the prob
lem lies with the different kinds of objects having different parameter-passing se
mantics for non-pointers or expanded objects respectively; call-by-copy instead of
call-by-reference. In our approach the memory inlining is a matter of an implemen
tation and is independent of all semantics of the object model. There is no need to

www.manaraa.com

186

Code

Objects of one class and their code object

declare initially and constantly bound references at all, because they may also be
derived by a compiler.

Inside a cluster inlined objects can be addressed by a LID. Outside of a cluster
the usual OlD is used. Initially and constantly bound, immutable objects can be
treated like plain immutable objects; they can be copied freely. In this special case
the new properties can be used to place the VIDs directly in the code and not nec
essarily in the variables. This procedure is the same as that done by compilers which
implement constants integrated into machine instructions and which are not loaded
from memory. Variables initially and constantly bound to immutable objects may
not be represented in the memory space of the object when this property is known
to all clients. This is the case, at least, for the code of the object's methods.

3.4 Classes

Classes are defined extensionally in chapter 2. Thus, they do not need a representa
tion at run-time. Each object has its own methods, because only its own methods
can access its local variables. In an implementation it does not make sense to have
all objects with their own method code. The grouping of equal methods is recom
mended for efficient memory usage. The access of the method code to the variables
of an object is implemented by segmentation mechanisms like index registers or
hidden parameters.

The method code of the objects belonging to one class can be implemented by a
special object visible to the implementation only. Each object of the class has a ref
erence to that code object. It represents the class (fig. 3.3).

The code of a class is normally immutable. Thus, the code can easily be copied
in each address space and be addressed locally. This is a must for executable code.
The code object has a strongly collocated relationship to all the objects using the
code. Because it is immutable, dislocation conflicts between these objects can be
solved by different copies of the code.

The reference from each object to the code object is initially and constantly
bound. Thus, there is no need for the reference when all clients know which class
an object belongs to. Then the code of a method can be directly addressed by a cli
ent. The reference to the code object can be omitted when all clients know the class
of the object.

www.manaraa.com

c~

Fig. 3.4 Class C inheriting
from B and A

3.5 Inheritance

187

Fig. 3.5 Bindings between differential
classes

Inheritance is a concept of composing classes. As types are separated from classes
we need some kind of inheritance for both of them. Inheritance for types may be a
concept of creating conforming types. This does not lie within the scope of this pa
per.

This section deals with class-based inheritance, but not sUbtyping. Inheritance
between classes is used for refining and reusing the behavior of some base classes
into subclasses. In most languages the subclass is seen as one unit containing the
inherited properties of the base classes. See fig. 3.4 for a graphical representation
of class C inheriting from class B, which inherits from class A.

We propose another view to inheritance. We identify subclasses as differential
classes which describe all the changes of and refer to the base classes. Thus, the sub
classes do not include properties of the base classes, they only refer to them. In fig.
3.5 the same situation seen in fig. 3.4 is presented, but the boxes represent differen
tial classes. The objects of the classes in an inheritance hierarchy refer to each other
by a reference. These references correspond to keywords like self and super3. Self
refers to the last subclass which inherits no further. Super refers to the base class.
These references are represented in fig. 3.5 by arrows. Grey arrows are self refer
ences which are rebound by the inheritance mechanism.

Using references of the objects of inheriting classes to model inheritance has its
advantages for implementation. There is no need for a special implementation
mechanism to deal with inherited classes. The implementation treats differential
classes as normal classes. The creation of objects of these classes also causes the
creation of objects of the base classes with certain bindings for their self and super
variables. The bindings are initially and constantly bound and all objects are collo
cated, i. e. the bindings are addressed by LIDs and memory-inlining can be done.
This is quite the same implementation as in traditional languages, e. g. C++.

In our model there is no need to collocate the objects. A dislocation leads to a
distributed inheritance mechanism, which allows the distribution of some parts of
an object. This is possible because there is not only one object of an inheriting class,
but many objects of many base or differential classes respectively.

3. We adopted these names from the Smalltalk terminology [13].

www.manaraa.com

188

3.6 Type Checking

Like classes types do not necessarily need a run-time representation. Types are in
troduced to get programs type checked, i.e. all method calls are legal and the well
known Smalltalk error message, "message not understood", will not occur.

Compilers can do most of the type checking at compile-time, but there are several
circumstances which need a run-time type checking, e. g. for type-case and type-of
statements and for binding references to a variable with larger type. In a distributed
environment there may be objects with types which are not even known at compile
time. To initialize a distributed application the run-time system needs to type check
all references to objects with these unknown types. For all these cases of run-time
type checking a representation of types at run-time is necessary.

Therefor we introduce one more set of auxiliary objects for types. All objects
have a reference to a type-object. This is constantly and initially bound and immu
table. Thus, it is subject to the above-mentioned optimizations.

The type objects have a method for type comparisons as in Emerald [4]. These
methods and the unique identification of type-objects are used for run-time type
checking.

4 Conclusion

We have shown that in some circumstances the implementation of a uniformly dis
tributed object model can be optimized. This optimization is as efficient as non-dis
tributed language implementations when the application is not distributed, because
the implementation places all objects into one cluster and collocates them. Internal
pointers are avoided by memory-inlining when objects are initially and constantly
bound. Immutable objects allow the inlining of object references in the method
code. This corresponds to compiled programs in a non-distributed language.

A distributed application is obviously not as efficient as a non-distributed appli
cation when we only look at the addressing of objects and memory usage. The
above-mentioned optimizations are a step towards an optimal implementation.

To validate the practical use of the optimizations the construction of a prototyp
ical compiler is planned. This compiler will output, with specific distribution de
scriptions, the possible implementation optimizations of specific example applica
tions.

References

1. B. Liskov, "The Argus language and system"; In: Distributed systems, methods,
and tools for specification; M. Paul, H. J. Siegert [Eds.], Lecture Notes in
Compo Sci. 190; Springer, Berlin; 1985 - pp. 343-430

2. P. Dasgupta, R. Anathanarayanan, S. Menon, A. Mhindra, R. Chen: Distributed
programming with objects and threads in the Clouds system; Tech. Report GIT
CC 91/26, Georgia Inst. of Techn., Atlanta GA; 1991

www.manaraa.com

189

3. L. Gunaseelan, Richard J. Jr. LeBlanc: Distributed Eiffel: a language for
programming multi-granular distributed objects on the Clouds operating
system; Georgia Inst. of Techn., Tech. Rep. GIT-CC-91/50; Atlanta GA, 1991

4. N.C. Hutchinson, R.K. Raj, A.P. Black, H.M. Levy, E. Jul: The Emerald
Programming Language; Univ. of Washington, Seattle WA, Tech. Report 87-1v-
07; Oct. 1987, revised Aug. 1988

5. D. Ungar, R.B. Smith: "Self: The power of simplicity", In: Proc. of the Con/. on
Obj.-Oriented Progr. Sys., Lang., and Appl.; N. Meyrowitz [Ed.], (Orlando FL,
Oct. 4-8,1987); SIGPLAN Notices 22(12); ACM, New York NY; Dec. 1987 -
pp.227-242

6. M.A. Ellis, B. Stroustrup: The annotated C++ reference manual - ANSI base
document; Addison-Wesley, Reading MA, USA; 1990

7. B. Meyer: Eiffel: the language; Prentice Hall, New York NY; 1992
8. N. OxhllJj, J. Palsberg, M.l. Schwartzbach: "Making type inference practical";

In: Proc. of the 6th Eur. Con/. on Obj.-Oriented Progr.; O. Lehrmann Madsen
[Ed.], (Utrecht, June 29-July 3, 1992); Lecture Notes in Compo Sci. 615;
Springer, Berlin; June 1992 - pp. 329-349

9. J. Palsberg, M.1. Schwartzbach: "A note on multiple inheritance and multiple
subtyping", In: Multiple inheritance and multiple sUbtyping - Pos. Papers of the
ECOOP '92 Workshop WI; M. Sakkinen [Ed.], (Utrecht, June 29,1992); Tech.
Rep., Dep. of Compo Sci. and Inf. Sys., Univ. of Jyvaskyla, Finland; May 1992
- pp. 3-5

10. M. Faustle: Beschreibung der Verteilung in objektorientierten Systemen; Diss.,
IMMD, Univ. Erlangen-Niimberg; 1992

11. M. Faustle: "An orthogonal optimization language for uniform object-oriented
systems"; Parallel Compo Architectures: Theory, Hardware, Software, and
Appl. - SFB Colloquium SFB 182 and SFB 342; A. Bode, H. Wedekind [Eds.],
(Munich, Oct. 8-9, 1992); Lecture Notes in Compo Sci.; Springer, Berlin; to
appear 1992

12. B. Liskov, J. Guttag: Abstraction and Specification in Program Development;
MIT Press, Cambridge MA; 1986

13. A. Goldberg, D. Robson: Smalltalk-80: the language and its implementation;
Addison-Wesley, Reading MA, USA; 1983

www.manaraa.com

Focus: A Formal Design Method for
Distributed Systems

Frank Dederichs, Claus Dendorfer, Rainer Weber
Institut flir Infonnatik der Technischen Universitiit Munchen

Postfach 20 24 20, D-8000 MUnchen 2, Gennany

E-Mail: dedericf.dendorfe.weberr@informatik.tu-muenchen.de

Abstract

Focus is a formal method for the development of distributed systems. It covers all
the way of formal system development in three abstraction levels: requirements

specification, design specification, and implementation. This paper gives a short,

informal account of the method Focus and the rationale behind some of its features.

The application of Focus is illustrated by a simple example.

1. Introduction

The formal method Focus aims at the development of distributed systems. It covers the
whole development process by providing fonnalisms and methods for the phases of

• requirements specification,

• design specification, and

• implementation.

In order to span such a wide range of abstraction levels, a number of distinct fonnalisrns are
used. To specify the initial system requirements we use the formalism of trace
specifications. Such a specification describes the allowed runs of a distributed system from
a global perspective. A trace specification is non-constructive, i.e. it describes only the
allowed system behaviour and not how it may be achieved.

In a design specification, we use the modular and compositional fonnalism of stream
processing functions. The initial design specification is derived from the requirements
specification and is usually not executable. Then step-by-step design decisions like
modularization by functional decomposition are taken until finally a functional program is
obtained.

www.manaraa.com

191

The functional program can be seen as a particular functional specification which has the
property of being executable; it is an implementation of the distributed system. For reasons
of efficiency and availability on distributed hardware the functional program may be
transformed into an imperative program. In Focus, there are two experimental languages for
representing programs: AL and PL. The first one is an applicative language, while the
second one is procedural. Both are tailored for the methodological and technical framework
of Focus.

Currently, numerous formalisms for the description of distributed systems are proposed,
for example, temporal logics [11], Petri nets [16], CCS [14], CSP [8], UO-automata [9],
Statecharts [7] and so on. However, the integration of these formalisms into a
methodological framework that supports their goal-oriented use has only recently attracted
more attention. Among the approaches that emphasise methodological aspects are Lamport's
transition axiom method [12], Unity from Chandy and Misra [4] as well as the Esprit
Projects Procos [15] based on process algebras and Demon [17] based on Petri nets.
Furthermore there are a number of object oriented approaches [5], [13], which strive for the
same aim but are less formal.

All these methods have their advantages and disadvantages. Their methodological merits
can only be assessed when they are applied. A notable comparison of different design
approaches including (a predecessor of) Focus can be found in [18].

With respect to the formal basis Focus is distinguished form the methods mentioned
above in that it places the emphasis on functional techniques. The formalisms of trace
specification, functional specification, functional and imperative programs are chosen to
reflect the abstraction levels of the development phases. For example, initially it is
appropriate to have a global view of a system instead of thinking about it in terms of its
processes. For the subsequent development, the functional setting provides a more modular
description technique. These formalisms are well-integrated, and guidelines and
transformation rules are provided for the transition between consecutive levels. It is
necessary to make these transitions as straightforward as possible. The main work of
program development is done within the individual abstraction levels. Here the creativity of
the system designer is needed. However, some heuristic design principles can be provided
for the refinement within each abstraction level.

Each of the sections 2 to 4 is devoted to one of the three abstraction levels of
requirements specification, design specification, and implementation. Within each section,
we first give an informal overview of the level, then we motivate why we consider the
suggested formalism and technique appropriate for the particular phase, and finally we give
an illustrative example. The examples are simplified "snapshots" of a protocol development
for a communication system, where a transmitter and a receiver component are designed to
guarantee reliable communication over an unreliable medium. The complete development
can be found in [6]. A much more detailed description of Focus is in [2]; for a summary of
case studies see [3].

www.manaraa.com

192

2. Requirements Specification

2.1 Overview

Trace specifications describe the behaviour of distributed systems in a very abstract and
property-oriented way. Thus they are well-suited for formalising requirements.

Technically, a trace specification describes the allowed runs of a distributed system by
giving a set of finite and infinite sequences of actions. Actions are atomic entities that

represent the basic activities in a system, like "pressing a button" or "sending a message". A
trace can be seen as the observation of a complete system run from a global perspective. For
example, the behaviour of a communication system is specified by the valid sequences of

send and receive actions. In a trace specification the allowed system runs are characterised
by stating which properties have to be fulfilled. For this purpose predicate logic formulae
are used.

In many cases a reactive system can only be described properly together with the
environment in which it is embedded. Then also the environment is modelled in the
requirements specification. Technically, there is no difference in the description of the
system components and the environment. Methodologically, however, there is: the system
has to be implemented during the development process whereas the environment is supplied
by the customer. Hence we will talk about two kinds of components in our model: system
components to be implemented and environment components to be supplied by the
customer.

Often it is a fundamental requirement of the customer that the overall system is structured
into several components. An example for this is a communication system, where it is a
necessity that the transmitter and receiver are separate components (see Fig. 2).

Summing up, a requirements specification includes:

• Global requirements
These are requirements on the whole system expressing properties of its global
behaviour.

• Description o/the components' syntactic interface
Here it is fixed which components the system should consist of, which components
are to be implemented and which are environment components. Furthermore it is
stated what the input and output actions of each component are.

• Environment assumptions
These are properties of the environment components. The system designer may
assume these properties to hold.

In this form, a requirements specification describes the overall task of system development
in a concise way: develop components with appropriate input and output actions, such that
the composition of these components with the environment components satisfies the global
requirements on the whole system, provided the environment components stick to their
assumptions. On the trace level, the task of the system designer is to find a so-called local

www.manaraa.com

193

specification for each component to be implemented. A local specification describes the
behaviour of a single component. These local specifications will then be refined into parallel
programs in the subsequent development phases.

2.2 Rationale

We made the observation that during the initial phase of a system development it is often
easier to state some "global objectives" of how the system should behave rather than stating
particular explicit requirements for each system component. Moreover, in this phase it is
easier to state requirements for the system runs rather than to give an already operational,
executable specification. The task of stating global objectives in an abstract, non-operational
way can be accomplished with trace specifications. Moreover, due to the use of predicate
logic, trace specifications have a great expressive power, which is an essential property for
a requirements specification formalism.

In contrast to related formalisms, in particular the trace formalism in [8], we use both
finite and infinite traces. Infinite traces are needed to model arbitrary liveness properties of
possibly non terminating systems. For example, a liveness property of a communication
system is that every message sent will eventually be delivered.

2.3 Notation and Example

In a trace specification we specify the allowed traces using predicate logic formulae. A trace
specification has the form PI(t) /\ ... /\ poet), where t is a trace variable and each Pi(t) is

an (auxiliary) predicate on traces. Auxiliary predicates are introduced to structure a
specification into several less complex requirements. When defining trace predicates, the
usual logical connectives are used. Each trace predicate represents a property of the system
behaviour. We distinguish between safety and liveness properties. Informally, safety
properties exclude undesired effects, liveness properties guarantee desired effects. More
precisely, a safety property is a property whose violation can always be detected after a
finite amount of time, i.e. by considering a sufficiently large finite prefix of a trace. A
liveness property is a property whose violation can only be detected after a complete,
possibly infinite observation, i.e. by considering a complete, possibly infinite trace. See
[12] for further aspects of safety and liveness.

To illustrate our approach we use the example of a communication system (see Fig. 1).

I communication system

Fig. 1: Global view of the communication system

www.manaraa.com

194

Here, Snd is the set of send actions, Rec is the set of receive actions. The action
snd(d) models that the datum d is sent from the environment to the communication
system, while rec(d) models that it is received by the communication system from the

environment. Formally:

Snd == {snd(d) IdE D} Rec == {rec(d) IdE D}

are the action sets considered here. D is a (predefined) set of "user data".

It is the overall purpose of the communication system to establish a reliable communication
line. This is expressed by the properties US and UL, which can be seen as the global
requirements of this specification.

US(t) denotes that t is an allowed trace iff for all prefixes of t the sequence of received
data is a prefix of the sequence of sent data. In other words: only those data are received that
have been sent, and this happens in the correct order. US is a safety property.

US(t) == 'if s !;; t : dt(Rec © s) !;; dt(Snd © s)

The symbols !;;, © and dt denote predefined operations. s!;; t denotes that s is a prefix
of t. © is a filter operation. Rec © t filters the actions in the set Rec from t. For
example, Rec © (rec(d\), snd(d2), rec(d3» = (rec(d\), rec(d3». The function dt projects

the data component, e.g. dt«rec(dd, snd(d2), rec(d3») = (d\, d2, d3).

UL(t) denotes that finally as many receive actions as send actions occur. UL is a
liveness property.

UL(t) == #(Rec © t) = #(Snd © t)

#t denotes the length of t (which may also be infinite: 00). So, (snd(d2)' snd(d3), rec(d2),
snd(d4), rec(d3), rec(d4» is a correct trace. The trace (rec(d2), snd(d2» is not allowed
(because it violates US), and neither is (snd(d2), rec(d2), snd(d3» (because it violates
UL).

It seems as if these requirements could be achieved quite easily: design an agent that realizes
the identity function. However, there is the additional constraint that the transmitter and the
receiver must not communicate directly, but only via a given medium. Thus, the
communication system must be structured as in Fig. 2:

L-________________________________ -" upper layer

Fig. 2: The inner structure of the communication system

www.manaraa.com

195

This situation is typical for protocol design: the medium represents a lower layer of a
protocol hierarchy. It provides unreliable data transfer. It is our task to develop a transmitter
and a receiver component that turn the unreliable transfer into a reliable one.

Thus the communication system consists of three components: the transmitter and the
receiver, which are to be implemented, and the medium, which is an environment
component. We will now describe the components' syntactic interfaces. Four additional
action sets are considered for the interaction of the transmitter and the receiver with the
medium:

PutT == (putT(X) I x E N x D}

GetT == (getT(y) lYE N}

PutR == (putR(y) lYE N}

GetR == (getR(X) I x E Nx D}

The reason why x is from N x D and y is from N is explained below.

The assumptions for the medium, the environment assumptions, are the properties LS and
LL. LS(t) denotes that anything the transmitter gets from the medium must have been put
to the medium by the receiver and vice versa. LL(t) denotes that if the transmitter puts
infmitely many data items to the medium, then infinitely many data items are delivered to the
receiver and vice versa.

LS(t) == 'if s !;; t : (getT(x) in s => putR(X) in s) 1\ (getR(x) in s => putT(X) in s)

LL(t) == (#(putT(X) © t) = 00 => #(getR(x) © t) = 00) 1\

(#(putR(X) © t) = 00 => #(getT(x) © t) = 00)

Hence, the medium is unreliable in the sense that it may interchange the position of sent data
and it also may lose data. However, if something is sent often enough it finally gets
through. This is ensured by LL.

A first step in the development of the transmitter and the receiver is to deVelop local
specifications for these components. Technically, such a specification is a trace formula that
only talks about input and output actions of one component.

After several refinement steps (see [6]), we arrive at local specifications T for the
transmitter and R for the receiver, such that

T(t) 1\ R(t) 1\ LS(t) 1\ LL(t) => USCt) 1\ UL(t)

i.e. the requirements T and R together with the assumptions LS and LL about the
medium imply (satisfy) the global requirements US and UL. In our setting, refinement
simply means implication of trace predicates.

The implementation we are going to develop in the sequel is based on an idea from [19].
It makes use of so-called sequence numbers. The transmitter attaches a unique sequence
number to every message obtained from the environment. This is the reason why in putT(X)
the x is from N x D. On the other hand, when the receiver gets a message getR(<k,d»
from the medium, it gives the data part d to the environment and puts the sequencs number
k back to the medium to acknowledge the receipt of the message. The medium transfers the

www.manaraa.com

196

sequence number back to the transmitter. This is reason why the y in getT(y) is from N.
The transmitter can be sure that the message with sequence number k has been transmitted
if it receives k as acknowledgement from the receiver. Of course also acknowledgements
may get lost.

The specification of the transmitter reads as follows: T '" TS 1\ TL where TS and TL
are defined below: TS(t) denotes that the datum d put to the medium by the transmitter
with the sequence number k is actually the k-th datum sent by the environment. TL(t)
expresses that if at least k send actions occurred and the k-th message has not received its
acknowledgement yet, then some message must be sent infinitely often.

TS(t) ;; 'if s !;; t : putT«k,d» in s => (Snd © s)[k] = snd(d)

TL(t) ;; #(Snd©t) > k 1\ -, getT(k) in t => 3 j, d : -, getTU) in t 1\ #(putT(<.i,d>)©t) = 00

Here s[k] denotes the k-th element of the stream s.
This local specification, which consists only of local requirements for the transmitter, is

the basis for the subsequent design. Since Focus is a modular and compositional formalism
the development of the transmitter and the receiver can be done independently.

3. Design Specification

3.1 Overview

Once the overall structure of the system components is fixed and the (local) requirements for
each component have been determined, we switch to a component-oriented specification
technique such that modular refinement becomes possible. The system is seen as a
collection of components called agents, which are connected by unidirectional
communication channels. As an example for an agent, consider the transmitter of our
communication system (see Fig. 3).

from environment

~ (unidirectio~.~l) channels

I trTT'I .• ·.·.·.·.·.· .•• · .• · .• · .•• ag~/i.·/···
to and from medium

Fig. 3: The transmitter as an agent on the functional level

It is an important feature of Focus that each of these agents can be developed independently,
based on the local requirements specification. Such a decomposition process can be applied

www.manaraa.com

197

repeatedly, i.e., not only the system is split into a collection of agents, but also each agent
can be split into several subagents in order to add further structure.

In such a modular system description, every agent is an independent entity. Because the
only connection with its environment is via the communication channels, the inner structure
of the other agents need not be taken into account.

Agents communicate in an asynchronous way. Operationally, one may imagine that the
channels are first-in-first-out buffers of infinite capacity, such that an agent may always put
some message into a channel without being blocked or delayed. On a more formal level, the
communication history of each channel is represented by a stream, i.e. a finite or infinite

sequence of messages. Agents are represented by stream-processing junctions, and the
whole network is defined by the functional composition of its components (feedback loops
are modelled using fixpoint-techniques). See [1] for a detailed description.

The specification of a system contains the specification of the individual agents and that
of the network structure. An agent is specified by a predicate on stream processing
functions. The network structure is specified either as a set of (mutually) recursive stream

equations or by special composition operators.
The connection between a trace specification and the functional specification is that each

message put onto a communication channel constitutes an action. Each trace that is
generated by one of the specified functions for some input must be allowed by the trace

specification.
On the functional level, the development process starts with a (usually very implicit)

specification of the agent, which is derived from the local trace specification.
During the development process specifications are refined, the predicates are transformed

and design decisions are incorporated. In every such design step, the specification is
strengthened or simply rewritten. The aim is to obtain an explicit description of the stepwise
computation process, which can then be transformed into an implementation.

3.2 Rationale

The design specification level has three main ingredients:

• a model for distributed, communicating systems,

• a specification formalism for such systems, and

• a refinement method for the transition from implicit to implementable specifications.

The system model must represent distributed, communicating systems. It should be
carefully balanced such that it has both a sound mathematical basis and is close to a practical
implementation, especially on distributed hardware. We think that this is true for the Focus
system model of agents that communicate asynchronously via point-to-point channels. It
has been shown in [10] that networks of such agents can be seen as stream processing
functions, which yields a compositional denotational semantics. The connection to an
implementation can either be made using functional programming languages or the
denotational semantics of an imperative programming language (see Section 4).

www.manaraa.com

198

The specification of systems by predicates on stream processing functions has the
advantage that the well-known formalism of predicate logic can be used. Stepwise
refinement and the incorporation of design decisions is straightforward by strengthening

predicates, e.g. by adding conjuncts. As on the trace layer the refinement relation is simply
the implication of predicates.

Refining specifications in order to obtain more constructive (implementable) formulae
can be seen as vertical refinement. In addition, it is possible to use functional decomposition
not only to express spatial or logical distribution, but also as a means of horizontal
refinement. Decomposing an agent into several subagents leads to more modular and
structured system descriptions.

3.3 Notation and Example

The network in Fig. 2 can be specified by the following set of stream equations. In these
mutually recursive formulae, the input and output channels are called in and out,

respectively, and x, y, Z, v are local channels between the system components:

x = transmitter(in, y)

(y, z) = medium(x, v)

(out, v) = receiver(z)

In a certain sense the behaviour of the transmitter is time dependent. For instance, it
sometimes has to repeat the sending of a message <k,d> until it finally receives k as
acknowledgement. To specify a behaviour like this from now on we assume that all input
streams of the transmitter carry timing information. This is modelled by a special message
...J (pronounced "tick"). Therefore the transmitter has the following functionality:

transmitter: (Snd u {...J})OO x (Getr U {...J})OO ~ PutrO)

A ...J in an input stream represents the situation that a time unit has passed but no "real"
message occurs. Since time cannot stop, it is consistent with this modelling that all streams
that contain ticks are infinite (often they contain an infinite number of ticks). One cart
assume that the environment and the medium are required to include ...J in their output
streams.

The transmitter is specified as follows: The predicate TS' expresses that the transmitter
may only output an message <k,d> if the k-th message of the environment has been d.
TS' looks quite similar to last section's corresponding predicate TS on traces.

TS'(f) == V X E (Snd u {...J})oo: V y E (Getr u (...J})oo:

<k,d> in f(x,y) => (Snd © x)[k] = snd(d)

The predicate below states the following: suppose the transmitter receives an input stream
that contains more than k messages from the environment, but not the acknowledgement to
the k-th message. Then there must be a pair <.i,d> that has not been acknowledged so far
and that is sent infinitely often.

www.manaraa.com

199

TL'(f) == V X E (Snd u {""'})~: V y E (GetT u H))~:

#(Snd © x) > k 1\ ..., getT(k) in y ~

:3 j, d : ..., getTU) in y 1\ #(putT(<.i,d» © f(x,y» = 00

In fact, the predicates TS' and TL' can be obtained from 1'S and TL by a schematic
(syntactic) transformation. Note that due to our assumption above we only talk about
infinite input streams. The sets Snd, GetT, PutT are defined in the previous section.

The developer's task on the functional level is to strengthen the predicates with the goal of

eventually arriving at a formula that fulfils certain syntactic constraints so that it can be

considered executable. This is a process that requires the developer's creative imagination.

It generally includes different steps, such as:

• functional decomposition, i.e. splitting an agent into a network of subagents in order
to modularize the system,

• making design decisions by adding conjuncts to the specification (for example, in

which order will the transmitter send the non-acknowledged pending messages),

• rewriting the specification such that the reaction of an agent to some newly arriving
input is made explicit, i.e. giving a specification of the form f(z' i) = f.z ' h(z ' i)
for some suitable auxiliary function h,

• constructing an explicit state space, which is easy to access and update (for example, a

state space that contains the next valid sequence number and a list of pending

messages).

The first step mentioned above is horizontal refinement, while the other ones are vertical
refinement steps. Note that the second step still describes the intended design in a very

abstract way, while the third and fourth step aim towards an reasonably efficient

implementation.

After all these design steps are made, we arrive at an executable functional specification,
which can be seen as a functional program. At the end of this stage, the transmitter may, in
a typical functional programming style, look as follows:

transmitter = trans(l, 0)
where trans is defined by

trans(n, O)("""x, """Y)
trans(n, (»(snd(d)ox, "",oy)

trans(n, (»("""x, getT(k)oy)
trans(n, O)(snd(d)'x, getT(k),y)

trans(n, <k,d>oq)("",'x, "",oy)

trans(n, <k,d>oq)(snd(e).x, "",oy)

trans(n, <k,d>'q).("",ox, getTU)°Y)
trans(n, <k,d>oq)(snd(e)ox, getTU)°Y)

•
= trans(n, O)(x, y)
= trans(n+ 1, <n,d>)(x, y)

= trans(n, 0)(x, y)
= trans(n+ 1, <n,d>)(x, y)

<k,d> 0 trans(n, <k,d>'q)(x, y)

<k,d> ' trans(n+ 1, <k,d>'qo<n,e>)(x, y)

= <k,d>· trans(n, removeG,<k,d>'q»(x, y)

<k,d> • trans(n+ 1, removeG, <k,d>'q)' <n,e>)(x,y)

www.manaraa.com

200

Here the first parameter n represents the first unused sequence number and the second
parameter q represents the queue of message which have already been sent but not yet
acknowledged. The auxiliary function remove is used to delete messages from q when
acknowledgements arrive. It is defined as follows:

remove(j, (») = ()
remove(j, <k,d> 0 x) = if j = k then x else <k,d> ' remove(j,x)

4. Implementation

4.1 Overwiev

Focus offers two implementation languages, called AL and PL, respectively. AL is an
applicative (functional) programming language, while PL is an imperative (procedural) one.
Nondeterminism can be expressed in both languages. An AL program is an executable
functional specification in a special syntax. There is a set of transformation rules which
allow AL programs to be translated into PL programs.

4.2 Rationale

The reason for transforming functional programs into imperative ones is clearly the increase
in efficiency, especially on distributed hardware. AL and PL are designed to share the same
semantic basis (sets of stream processing functions), which makes it easy to give
transformation rules and prove them correct.

4.3 Notation and Example

The transmitter written as an AL program looks similar to the functional implementation
given in the previous section. Thus we do not give an AL version here. By applying some
transformation rules, the following PI program for the transmitter can be derived. The
correctness of this program follows by construction.

agent transmitter == chan snd x, chan get y -7 chan put 0 :

var nat count := I; var seq info queue := ();

var snd inputx; var get inputy;
loop x?inputx; y?inputy;

if queue", () then o!ft(queue) fi;
if inputy = -.j then skip

else queue := remove(inputy,queue) fi

www.manaraa.com

201

if inputx =" then skip

endloop
endagent

else queue := queue 0 <count,inputx>; count := count + 1 fi;

Here snd, get, put, info are syntactic (sort) identifiers for the respective sets introduced

before.

5. Conclusion

We have sketched the design method Focus in its present state. On the basis of case studies,
we are always consolidating and expanding the method. Whereas initially we concentrated
on control-intensive software systems (the communication system being a typical example),
we now extend our method to areas such as hardware modelling.

Up to now, Focus has been a paper-and-pencil-method. However, first experience has
been gained concerning tool-support. We are going to continue these efforts, mainly in the
area of verification assistance.

References

[1] M. Broy: Towards a Design Methodology for Distributed Systems. In: M. Broy (ed.):
Constructive Methods in Computing Science, NATO ASI Series F: Computer and

System Sciences, Vol. 55, Springer 1989, pp. 311-364

[2] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. Gritzner, R. Weber: The Design
of Distributed Systems - An Introduction to Focus. SFB-Bericht Nr. 34212192 A,
Technische Universitat Miinchen 1992

[3] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. Gritzner, R. Weber: Summary
of case studies in Focus - A Design Method for Distributed Systems. SFB-Bericht
Nr. 342/3/92 A, Technische Universitat Miinchen 1992

[4] K. M. Chandy, J. Misra: Parallel Program Design, A Foundation. Addison-Wesley

1988

[5] P. Coad, E. Yourdan: Object-Oriented Analysis, Second Edition. Prentice Hall 1991

[6] C. Dendorfer, R. Weber: From Service Specification to Protocol Entity
Implementation - An Exercise in Formal Protocol Development. In: R. J. Linn, M.
D. Uyar (Eds.): Proc. 12th Symposium on Protocol Specification, Testing, and
Verification. North-Holland 1992, pp. 163-178

[7] D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8,1987, pp. 231-274

www.manaraa.com

202

[8] c. A. R. Hoare: Communicating Sequential Processes. Prentice-Hall 1985

[9] B. Jonsson: A Fully Abstract Trace Model for Dataflow Networks. In: Proc. 16th
Annual ACM Symposium on Principles of Programming Languages, 1989, pp. 155-

165

[10] Gilles Kahn: The Semantics of a Simple Language for Parallel Programming. In: J. L.
Rosenfeld (Ed.): Information Processing 74, Elsevier Publishers 1974, pp.471-475

[11] F. Kroger: Temporal Logic of Programs. EATCS Monograph 8, Springer 1987

[12] L. Lamport: A simple Approach to Specifying Concurrent Systems. Communications
of the ACM 32(1),1989, pp. 32-45

[13] M. E. S. Loomis, A. V. Shah, J. E. Rumbaugh: An Object Modelling Technique for
Conceptual Design. In: J. Bezivin et al. (Eds.): ECOOP '87, European Conference on
Object-Oriented Programming, LNCS 276, Springer 1987, pp. 192-202

[14] R. Milner: A Calculus o/Communicating Systems, LNCS 92, Springer 1980

[15] E.-R. Olderog: Towards a Design Calculus for Communicating Programs. In: J. C.
M. Baeten, J. F. Groote (eds.): CONCUR '91, 2nd International Conference on

Concurrency Theory, LNCS 527, Springer 1991, pp. 61-77

[16] W. Reisig: Petri Nets. An Introduction. EATCS Monograph 4, Springer 1985

[17] G. Rozenberg, G. Goos, J. Hartmanis (Eds.): Advances in Petri Nets. LNCS 524,

Springer 1992

[18] Special Issue on Specification of Concurrent Systems. Distributed Computing 6(1),
1992

[19] V. Stenning: A Data Transfer Protocol. Computer Networks 1, 1976, pp. 98-110

www.manaraa.com

Parallelism in a Semantic Network
for Image Understanding

v. Fischer and H. Niemann

Lehrstuhl fiir Informatik 5 (Mustererkennung)
Friedrich-Alexander-U niversitiit Erlangen-N iirnberg

Martensstr. 3
D-8520 Erlangen

Abstract. The use of multiprocessor systems in the field of image analy
sis and understanding is motivated by the huge amount of data and the
need for extremly fast processing that is necessary to achieve practical
computer vision systems. The development of parallel algorithms for the
knowledge-based interpretation of complex scences (patterns) must con
sider aspects of knowledge representation as well as it's efficient use. It
is complicated by special problems of symbolic image processing, like
unreliable segmentation results, variable data dependencies, or the need
for integration of different levels of representation.
This paper introduces a parallel control algorithm for an image under
standing system that uses semantic networks for the representation of
task-specific knowledge. The algorithm is based on an explicit representa
tion of all necessary inferences in a single data flowchart. In a bottom-up
instantiation the sensor data are used for the computation of competing
instances for each element of the knowledge base. A top-down optimiza
tion is used for the iterative improvement and selection of hypotheses.

1 Motivation

The processing of a huge amount of data under very restricted time conditions is
the main ability that is assigned to today's computer systems by the analysis of
complex sensor data, and especially by knowledge-based image understanding.
The analysis of image sequences taken at video rate requires the interpretation
of complex scenes every 40 milliseconds. A typical image size of 512 x 512 pixels
in each of the three spectral channels therefore requires the execution of about
20 million instructions per second to perform a single operation keeping up with
the sensory input [8]. It is generally assumed that the interpretation of an image
needs much more operations per pixel (103 - 104), so that a computational power
of about 150 GIPS must be available for real-time computer vision.

Considering the limitaions of today's conventional, single-CPU computers,
the use of multiprocessor systems seems the only way to achieve the desirable
speed. Furthermore, the massively parallel processing in the human visual system
is a strong indication that the use of parallel systems can support the develop
ment of new, powerful algorithms (and intersting applications) in the field of
machine vision.

www.manaraa.com

204

Image interpretation is a mapping of sensor data into a set of symbols (the
knowledge base), that requires a (large) variety of operations and different rep
resentations of intermediate results (and intermediate representations). Usually
three different levels of processing are distinguished [5, 1, 18]:

Iconic processing (low-level-processing) deals with problem-independent al
gorithms and typically uses pixel-oriented methods.
Symbolic processing (high-level-processing) is characterized by the represen
tation and use of task-dependent knowledge. The goal of symbolic processing
is the computation of an appropriate symbolic description which

• optimally fits to the result of iconic processing,
• is maximally compatible with a priori knowledge,
• contains the information relevant for the current application.

Hence, symbolic processing is an optimization problem.
- An intermediate level serves as an interface between iconic and symbolic

processing and may include an initial symbolic description to represent all
data available from the iconic level [11].

There is quite a large number of architectures and algorithms dealing with prob
lems of low-level-processing [26, 2, 20]. In contrast, for several reasons paral
lelization of algorithms for symbolic processing is not so far developed:

- Different from many low-level-algorithms there are no fixed, predetermined
and/or regular data dependencies or communication patterns.

- The performance of high-level methods is highly dependent on results from
the other processing stages (e.g. initial segmentation), and some problems
of symbolic processing (e.g. integration of different knowledge sources or
different judgments (judgment schemes) are not well understood on mono
processor systems.

The present contribution describes first results in the development of a parallel
algorithm for the knowledge-based interpretation of complex patterns. Section
2 gives a brief account on the knowledge base and it's use in image analysis. In
section 3 we introduce the parallel control algorithm, that is based on an explicit
representation of all inferences in the knowledge base. The sections 4 and 5 report
first results and experiences with that algorithm and give an outline of further
work.

2 The Semantic Network System ERNEST

The automatic interpretation of complex patterns like color images, image se
quences or continuous speech requires the representation and use of problem
dependent knowledge.

The ERlangen semantic NEtwork SysTem ERNEST ([16]) provides a frame
work for knowledge based pattern understanding that allows both representing
declarative and procedural knowledge in a semantic network and formulating
problem-independent control algorithms. The system is used in fields of image
analysis [14, 12, 13, 23] as well as in speech understanding [15].

www.manaraa.com

205

2.1 Declarative Knowledge

In general, a semantic network is a directed and labeled graph, whose nodes
represent ideas or objects and whose links represent certain relations between
those ideas (nodes).

The particular knowledge representation language of the ERNEST-system
distinguishes three types of nodes and five different links.

The three nodes are the concept, the instance, and the modified concept. A
concept is a complex data strucuture for the definition of an idea, an object, or
an arbitrary situation. A concept consists of several substructures for further
intensional descriptions and of slots for the use of knowledge during analysis.
Furthermore, there are slots used for automatic knowledge acquisition and for
explanation of results.

Regarding the representation and use of knowledge during analysis the con-
ceptually most important slots (substructures) are:

the link description for the detailed description of relations between concepts,
the attribute description for the definition of a concept's properties,
the relation description for the description and test of relations between
attributes.

While concepts represent events or objects intensionally, instances associate in
tervals of the sensor data with concepts in the knowledge base and are therefore
an extensional description.

The third type of node is the modified concept. It is used to constrain or
modify the uninstantiated concepts during analysis and to reduce the complexity
of instantiation. The data strucures of all nodes are identical, but in instances and
modified concepts the description of attributes, relations, and links are replaced
by results or restrictions.

The five types of links defined in the representation language are the special
ization link, the part link, the concrete link, the model link, and the instance link.
The specialization link points from a general concept to a more special one and
is used for building up an inheritance hierarchie (a taxonomy). All substrucures
of a concept (attributes, relations, links) are inherited from the general concept
to a more special, unless inheritance is explicitly prohibited in the structure.

Decomposition of a complex concept C into simple parts or components Pi
is expressed by introducing a part link from C to each Pi. As a special feature of
the representation language, part links may be context-dependent, because often
a certain concept Pi can only be recognized with respect to the whole object C.

In complex pattern understanding applications there are usually different
levels of abstraction that must be processed (e.g pixels, 3D-Objects, real-world
objects). The concrete link establishes relationships between concepts of different
conceptional levels and provides some formal restrictions for the use of part and
specialization links (see also [16]).

Finally, the model link is used during automatic knowledge acquisition to
connect a learned concept to the corresponding concept in a model-scheme and
the instance link associates instances with concepts according to classification.

www.manaraa.com

206

Both links are not part of the knowledge base and therefore not considered
furthermore.

For concepts and link descriptions the representation language provides slots
for structuring the problem-dependent knowledge. In order to support the effi
cient realization of large knowledge bases and their use during analysis, parts
and concretes of a concept can be marked as obligatory or optional and can be
grouped in the so-called modality sets. Modality sets are defined in a concept and
enable the representation of multiple definitions of a certain object in a single
concept. Part and concrete relationships between concepts can be expressed effi
ciently by assigning a minimal and maximal number of occurence (a dimension)
to a link and by specifying a XOR-list of goal nodes in a link description.

In order to illustrate the terms introduced above, Figure 1 shows a simple
graphical representation of a truck and it's corresponding network model.

o

(a)

VEHICLE _ .. __ ----~~~c----------~
CAR

WHEEL COACHWORK

CIRCLE RECTANGLE

(b)

Fig. I. Simple graphical representation (a) and semantic network (b) of a truck (from
[16]).

www.manaraa.com

207

2.2 Procedural knowledge

Generation and verification of hypotheses or partial interpretations during analy
sis requires the incorporation of procedural knowledge into the network. In the
syntax of the network, the substructure function description supports procedural
attachment. Procedures can be attached to different substructures or slots of a
concept:

- In an attribute description the functions are computation of value and judg
ment. The first is used to calculate the (quantitative) properties of a concept
from the sensor data or from already known attribute values. The judgment
compares the computed values with the restriction or the expected values
from the knowledge base.

- In a relation the judgment points to a function that measures the degree of
fulfillment of the relation.

- The judgment in a link dscription allows the valuation of a part or concrete
with respect to the whole object.

- The slot judgment of a concept contains a pointer to a function that compares
an instance to its concept in terms of quality, certainty, and/or priority.

With the exception of the judgment in an attribute description and in a con
cept, for each procedure an inverse function can be defined for the model-driven
propagation of restrictions.

In the network formalism, every substructure is identified by a unique role
name. By definition, the syntax of the function description restricts the potential
arguments of a procedure. In section 3.1 these restrictions are used for the explicit
representation off all data dependencies needed during analysis.

2.3 Problem-independent Control

Different from other semantic network formalisms (e.g. PSN, procedural semantic
network [7, 10]) in our system the pragmatics of the network (that means the
utilization of a network for image or speech understanding) is definded globally
for the whole network, without respect to the field of application. This allows
the development of problem-independent control algorithms for the utilization
of the stored knowledge during analysis, because only the syntax of the network,
but not the meaning of concepts has to be considered.

The main task of the control algorithm is the computation of an instance for
a concept that defines a goal of analysis (goal concept) with respect to the sen
sory input. This requires the consideration of the representation language (e.g.
resolution of modality sets) as well as the management of competing instances
or modified concepts that causes competing states of analysis.

In the ERNEST-system control is based on six rules that define the instan
tiation process. Competing instances are handled by a state space search based
on the A * -algorithm [17]. The rules define the computation and completion of
(competing) instances, their extension with optional parts or concretes, and the
generation of modified concepts for constraint propagation. The latter can be

www.manaraa.com

208

done data-driven (bottom-up) or model-driven (top-down) and is a powerful
method to reduce the complexity of search. A sixth rule is introduced to in
corporate results of initial segmentation for the computation of possible goal
concepts.

The rules are described in detail in [6, 22, 16] and can only be characterized
here. Each rule has a premise and an action. In the premise the presence of parts,
concretes and contexts is tested. If a premise holds true, the operations defined
in an action are activated. They comprise the computation of attribute values
and the judgment of attributes, relations, links, and the instance or modified
concept itself.

3 Massively Parallel Control

As an important prerequisite for the development of algorithms for very fast
("reflexive") inferences, in [25] it is mentioned, that the syntactic structure of
an effective representation should directly mirror the inferential structure used
during analysis. Therefore, the first step in the design of a fast control algorithm
is an encoding of the knowledge base into a graph, whose nodes contain appro
priate elements of the network language, and whose links explicitly represent the
inferential dependency between nodes.

Different from (classifier-)systems that draw conclusions from (certain) facts,
a control algorithm for a knowledge-based image analysis system must be capable
to work with uncertain and competing hypotheses. Those result from noisy input
data and/or from segmentation errors and cause a combinatorial explosion of
possible matches between models and data. Therefore a control algorithm must
incorporate techniques for the suppression of possible intermediate results and
the selection of competing interpretations.

For a given semantic network, the inferences needed during analysis are inde
pendent of the semantics of the concepts and the current state of interpretation.
Hence they can be computed in advance from the syntax of the network to pre
pare an analysis process (section 3.1). In contrast, elemination of less promising
results caused by segmentation errors is dependent on the input data and must
be done by the control algorithm itself (section 3.2).

3.1 Encoding of the Knowledge Base

The goal of network encoding is the creation of a data flowchart that represents
all neccessary inferences and dependencies used for matching the input data
against the network. Criteria for consistency of a knowledge base (see [21]) are
tested, and inheritance of attributes, relations, parts and concretes is established
along the specialization hierarchy [6].

The first step for the computation of the data flowchart is the selection of
appropriate chunks of knowledge that should be represented by the nodes. For
semantic networks a natural choice is to map each concept to a single node. This
seems to be promising, if concepts are far less complex than in the frame-based

www.manaraa.com

209

language of the ERNEST-system (see e.g. [24]). The links of the data flowchart
would directly express the relations between concepts, in our case the part and
concrete link. Beginning with the so-called minimal concepts, that are concepts
without (inherited) parts and concretes, concepts in independent nodes can be
instantiated in parallel.

The choice of concepts as elementary units for the nodes of the data flowchart
preserves the benefits of semantic networks for the development of large know
ledge bases (e.g. node-centered representation, lucidity, ergonomic adequacy).
In our case, where concepts are rather complex structures, there are several
disadvantages:

The parallel computation of concepts does not allow data- and/or model
driven restrictions of the knowledge base by means of modified concepts. To
clarify this, let us assume a concept C having two parts P1 and P2 • If an
instance for P1 is computed first, the area for instances of P2 is restricted
to the complement in the image. If computed in parallel, the whole image
must be considered for both concepts.
Communication between nodes must handle complete instances, even if only
single values from subinstances are needed for the instantiation of superior
concepts.
Parallelism is limited, because independent computations in superior con
cepts cannot be executed before or during instantiation of subconcepts.

Considering the last two items, it seems reasonable to look for finer parallelism
in a network. Our suggestion is to handle all computations necessary for the
instantiation of a goal concept independent from their concept membership. De
pendencies between computations are stored in a graph, whose nodes represent a
single attribute, a relation or the judgment of a link or a concept. During creation
of the graph, all links are assumed obligatory and having maximal dimension (cf.
section 2.1). This allows the proper treatment of multiple occurences of objects
and their parallel instantiation during analysis.

Because the function description provides an uniform interface for the attach
ment of procedural knowledge (task-dependent procedures), the graph can be
generated automatically from a given knowledge base. Thereby the advantages
of the representation language are preserved.

Dependent on the structure, the following syntactical definitions of arguments
are possible:

- The computation of a value in an attribute description may have attributes
from the same concept, from it's parts, concretes, or a superior context.

- The argument of the judgment of an attribute is the attribute itself. No
explicit entries are allowed.

- Arguments of the judgment in a relation description are attributes. Possible
entries are the same as for the computatiopn of a value.

- The arguments of the judgment in a link description are the judgments of
the instances or modified concepts that are given in the link's list of goal
nodes. No explicit entries are allowed.

www.manaraa.com

210

- The judgment in a concept may be computed from judgments of attributes,
relations, and/or links defined in or inherited by the concept.

Exploiting the syntactical description of arguments allows us to assign each
node to a level I of the data flowchart. Let 'Pa(rl, ... , rn) denote the function
description with arguments rl to rn , that is bound to node a. The level I of node
a is determined by the level of the function 'Pa:

I _ {max{/rp"l"'" Irp ... } + 1 if n> 0
rp .. - 0 else

The lowest level (I = 0) is built by thoee attributes, that directly process the
results from initial segmentation; the highest level usually contains nodes for the
judgment of goal concepts. In Figure 2 some of the necessary computations from

TRUCK

Part: front wheel

Goalnode: WHEEL

Judgment: restr Jadius

Part: rear wheel

Goalnode: WHEEL

Judgment: restr Jadius

Part: coachwork

Goalnode: COACHIORK

Judgment: restr }eiqht

Attribute: truck }eiqht

Comp_of_value: com}eiqth

Arquments: rear_wheel.wJadius,

front _wheel.w _ radi us,

coachwork. heiqbt

Judgment: truck judge

Arquments: rear_wheel, front_wheel,

coachwork, truck }eiqht

llIEEL

Concrete: circle

Goalnode: CIRCLE

Judgllent: rest r Jadi us

Attribute: w radius

CDql_of _value: comJadius

Arquments: circle. c _radius

Judgment: wheeljudge

Arqullents: w Jadius

CIRCLE

Attribute: c radius

Comp_of_value: com)enqth

Arquments:

Judgment: circle judge

Arquments: c Jadius

Fig.2. Some computations defined in the knowledge base shown in Figure 1.

the model in Figure 1 are presented; Figure 3 shows a part of the data flowchart.
Boxes on the same horizontal line contain the functions which can be computed
in parallel.

www.manaraa.com

211

Fig.3. Part of the inference graph generated from the model shown in Figure 2.

3.2 Analysis

The control algorithm sketched in section 2.3 computes an interpretation by
the dynamic creation of instances and modified concepts during analysis. With
respect to the special features of the representation language (e.g. sets of modal
ities) the hierarchy of parts and concretes must be dissolved recursively. Control,
that means computation of an interpretation which is compatible to the sensory
input, is reduced to heuristic graph search.

In [4] we showed, that the length of a solution path grows exponentially with
the depth ofthe knowledge base, and in [19] it is shown, that very good heuristics
are needed to avoid exponential complexity when searching for an optimal path.
Furthermore, state space search demands the collection of intermediate results
into states of analysis (nodes of the search graph) and therefore requires a large
amount of communication between processors and a dynamically growing state
space.

Therefore it seems reasonable to look for methods that promise less com
plexity than graph-based control and that are well suited for massively parallel
processing.

The control algorithm described below treats the mapping of sensor data
into the knowledge base as an optimization problem where an error criterion
(judgment error) has to be reduced. The algorithm consists of two alternating
phases, a data-driven bottom-up instantiation and a model-driven top-down op
timization that uses techniques from neural networks and linear optimization for
the iterative improvement of an interpretation.

www.manaraa.com

212

Bottom-up Instantiation. During bottom-up instantiation on each level of
the data flowchart the nodes are computed in parallel. Therefore the user-defined
function (e.q. the computation of an attribute value) is executed. Starting with
the attributes on the lowest level that directly access results from the initial
symbolic description or from initial segmentation, instantiation proceeds step
wise for all levels. Because results from iconic or iconic-symbolic-processing are
usually erroneous and ambiguous, in general a node passes competing values to
it's successors. Therefore the nodes on higher levels must be activated for every
possible combination of inputs. To avoid the combinatorial explosion of compet
ing hypotheses and also to restrict the communication between processors, it is
useful to limit the number of hypotheses created by each node. 1

Considering the judgment of a hypothesis it is possible to develop a local
pruning method for each node. In our current applications it is possible to use
an identical pruning criterion for each node. Actually the best n results, or all
results judged better than a given threshold B are possible candidates for further
processing.

Top-down Optimization. During bottom-up instantiation for each node of
the data flowchart competing judgments are computed. Each judgment consists
of a measure for the quality of the mapping between sensor data and the piece
of knowledge, that is represented by the node. The highest level of the graph
usually contains judgments for different goal concepts, that represent competing
interpretations of a scene or a signal.

The purpose of top-down optimization is to select the interpretation that
matches best, and requires also the determination of all components of the in
terpretation and the elimination of wrong results.

To determine an optimal interpretation, we minimize the judgment error

(1)

The desired judgments are stored in the vector fld' and flQ is the vector of judg
ments computed during bottom-up instantiation. The determination of fld re
quires an analyzed scene, that can be computed using the sequential control
algorithm of the ERNEST-system (see section 2.3).

To minimize E, the links of the data flowchart are provided with weights,
and each judgment g is written as a function of it's weighted predecessors:

(2)

In each step of iteration the weights f!:!. = (WI, ... , W n) are adjusted for each node

1 Other possibilities would be the application of additional tests for plausibility and,
of course, an improvement of low-level-processing, which is both out of interest in
this paper.

www.manaraa.com

213

according to (Eq. 3). Alternating with bottom-up instantiation, this proceeds
until an appropriate criterion, e.g. E ::; f, becomes true.

(3)

An investigation of the user-defined judgment is necessary to determine an
appropriate optimization method. If a derivative exists, a gradient descent can
be done Ctt = fJE/fJwi), else a coordinate descent would be appropriate.

Iteration 1

initial
segmemation

Iteration n

Fig.4. Effects of the two-stage control algorithm. The judgment of a node is improved
stepwise (indicated by dark circles) and a unique correspondence is established.

In Figure 4 the effect of the two-stage algorithm is shown schematically. After
bottom-up instantiation (left side), results from initial segmentation (squares)
are assigned to the elements of the knowledge base (circles) and competing in
terpretations are equally shaded. Performing n iterations results in a unique as
signment of segmentation objects and a refined and precise interpretation (black
circles), whereas wrong results are suppressed (white circles).

4 Results

Most of the work done so far investigates the phase of bottom-up instantiation
of the algorithm described above. Figure 5 shows part of a knowledge base for

www.manaraa.com

214

Fig. 5. Knowlege base for the interpretation of traffic scenes (excerpt).

the interpretation of traffic scenes 2 [9]. During the preparation of analysis for
the shown network a inference graph is constructed, that contains 48 nodes on
10 levels. Figure 6 shows an excerpt of the graph, and verifies the unequal filling
of the different levels (max. 19 nodes (level 1), min. 1 node) as well as the
irregularity of connections.

Table 1 reports CPU-times for the bottom-up instantiation of some concepts.
Columns 2 - 4 show results for processing of the n = 3,2,1 best ranked hypothe
ses generated by a node. Because of the fuzzy-functions used in this example,
the best interpretation is always found, if we only process the best alternative
(n = 1). For comparison, the last column reports results for the graph-based
sequential algorithm [6]. For n = 1 Table 2 reports the speed-up s and efficiency
e of a multiprocessor simulation, where largest possible parallelism (column la
beled p) was assumed. Results were averaged over a sequence consisting of 30

2 The authors are very grateful to Mrs. S. Steuer (FORWISS Munich) for making her
knowledge base available to us.

www.manaraa.com

215

Fig. 6. Structure of the data flowchart.

IgOal concept II T[s] IIT8[s]1
n = 31n = 21n = 1

Street 0.18 0.15 0.15 0.41
Marking 0.18 0.15 0.14 0.32
Median 0.13 0.11 0.11 0.16
Margin 0.05 0.05 0.05 0.10

Table 1. CPU-time for bottom-up instantiation.

images and obtained by using the PEPP-system described in [3]. The columns
marked coarse are the results we obtain, if we assign a concept to each proces
sor. Our approach, that is assigning a single computation to each processor, is
marked medium. As a result it is obtained, that we can achieve better speed-ups
by means of a finer parallelization. In addition to the unequal filling of the dif
ferent levels, the different tasks on each level provide the main reason for quite
small speed-ups: more than 50 percent of the total time Tp (respectively Ts)
was spent for the computations on level 0, the interface to signal processing.
Considering this observations it seems promising to use several processors for
the computation of these nodes. First investigations in this direction show, that
this will result in a significant improvement of speed-up without losses in effi
ciency. Also small modifications of the knowledge base (e.g. splitting up complex
attributes into simple components) seem to be promising.

Because of the large variety and number of parameters (see section 3.2), the
top-down optimization has not been tested sufficiently up to now. First results
indicate, that the weighted links bear a large amount of information about a
scene that is won during analysis.

www.manaraa.com

216

goal concept coarse medium
pi sp I ep pi Sp I ep

Street 4 1.597 0.399 14 2.17 0.155
Marking 3 1.809 0.603 12 2.510 0.209
Median 2 1.689 0.844 5 2.020 0.404
Margin 20.960 0.480 4 1.633 0.408

Table 2. Speed-up and efficiency for bottom-up instantiation.

5 Conclusions and Outlook

In the preceding sections a massively parallel control algorithm for knowledge
based pattern analysis was introduced. To preserve the advantages of our se
mantic network formalism for knowledge representation and it's use in pattern
understanding, we decided to explicitly represent all inferences in a graph by run
ning some algorithms for the preparation of an analysis. By use of a two-stage
method the control algorithm generates an interpretation that is compatible
with the sensor data. Parallel bottom-up instantiation of the nodes computes
competing matches for all elements of the knowledge base. It is alternating with
a top-down optimization, that causes a stepwise improvement and elemination
of alternative interpretations. In a simple example, fairly small speed-ups are
observed as a result obtained from a multiprocessor simulation of the bottom
up instantiation. The main reasons are the irregular data dependencies and the
different tasks on each level of abstraction.

In contrast, there seems to be some "learning capability" during top-down
optimization. The iterative top-down optimization is a means for variable depth
analysis. If much time is available, many iterations can be carried out to obtain
refined and precise results. If a quick respose is necessary, only few iterations
are performed at the price of less reliable results. They are the object of further
investigations, that are beyond our original goal, which was parallel instantiation.
In addition to aspcets of representation and use of knowledge in "connectionist
semantic networks", we think of the efficient analysis of image sequences.

References

1. D. Ballard and C. Brown. Computer Vision. Prentice Hall, Englewood Cliffs, New
Jersey, 1982.

2. V. Chaudhary and J.K. Aggarwal. Parallelism in computer vision: A review. In
V. Kumar, P.S. Gopalakrishnan, and L.N. Kumar, editors, Parallel Algorithms
for Machine Intelligence and Vision, pages 271-309. Springer-Verlag, New York,
Berlin, Heidelberg, 1990.

www.manaraa.com

217

3. P. Dauphin, F. Hartleb, M. Kienow, V. Mertsiotakis, and A. Quick. Pepp: Per
formance evaluation of parallel programs. users's guide - version 3.1. Technical
Report 5/92, Lehrstuhl fiir Informatik 7, Friedrich-Alexander-Univeritat Erlangen
Niimberg, September 1992.

4. V. Fischer. Parallelisierung von Instantiierungsoperationen in semantischen
Netzen. In Arbeits- und Ergebnisbericht des Sonderforschungsbereichs 182
"Multiprozessor- und Netzwerkkonfigurationen". Teilprojekt D1, chapter 5.2, pages
109-136. Erlangen, 1992.

5. A. Hanson and E. Riseman. Processing cones: A computational structure for scene
analysis. In S. Tanimoto and A. Klinger, editors, Structured Computer Vision.
Academic Press, New York, 1980.

6. F. Kummert. Flexible Steuerung eines sprachverstehenden Systems mit homogener
Wissensbasis, volume 12 of Dissertationen zur K iinstlichen Intelligenz. Infix, Sankt
Augustin, 1992.

7. H. Levesque and J. Mylopoulos. A procedural semantics for semantic networks.
In N. Findler, editor, Associative Networks, pages 93-121. Academic Press, Inc.,
New York, 1979.

8. S. Levitan, C. Weems, A. Hanson, and E. Riseman. The UMASS image under
standing architecture. In L. Uhr, editor, Parallel Computer Vision, pages 215-248.
Academic Press, Inc., Boston, 1987.

9. T. Messer, S. Steuer, C. Weighardt, D. Wetzel, A. Winklhofer, and
A. Zins. Movie-Projektbeschreibung: Schritthaltende Bildfolgeninterpretation von
Fahrszenen. Technical report, Bayerisches Forschungszentrum fiir Wissensbasierte
Systeme (FORWISS) und Bayerische Motorenwerke AG (BMW AG), 1990.

10. J. Mylopoulos and H. Levesque. An overview of knowledge representation. In
M. Brodie, J. Mylopoulos, and J. Schmidt, editors, On Conceptual Modelling: Per
spectives from Artificial Intelligence, pages 3-17. Springer-Verlag, Berlin, Heidel
berg, New York, 1983.

11. H. Niemann. Pattern Analysis and Understanding. Springer-Verlag, Berlin, Hei
delberg, New York, 1990.

12. H. Niemann, H. Briinig, R. Salzbrunn, and S. Schroder. Interpretation of indus
trial scenes by semantic networks. In Proc. of the IAPR Workshop on Machine
Vision Applications, pages 39-42, Tokyo, 1990.

13. H. Niemann, H. Briinig, R. Salzbrunn, and S. Schroder. A knowledge-based vision
system for industrial applications. In Machine Vision and Applications, volume 3,
pages 201-229. Springer-Verlag, New York, 1990.

14. H. Niemann, H. Bunke, 1. Hofmann, G. Sagerer, F. Wolf, and H. Feistel. A know
ledge based system for analysis of gated blood pool studies. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 7(3):246 - 259, 1985.

15. H. Niemann, G. Sagerer, U. Ehrlich, E.G. Schukat-Talamazzini, and F. Kummert.
The interaction of word recognition and linguistic processing in speech understand
ing. In R. De Mori and P. Laface, editors, Recent Advances in Speech and Language
Modelling, NATO ASI Series F. Springer-Verlag, Berlin, 1992.

16. H. Niemann, G. Sagerer, S. Schroder, and F. Kummert .. ERNEST: A semantic net
work system for pattern understanding. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 12(9):883-905, 1990.

17. J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, Berlin, Heidel
berg, New York, 1982.

18. D. Paulus. Objektorientierte Bildverarbeitung. Dissertation, Technische Fakultat
der U niversitat Erlangen-N iimberg, 1991.

www.manaraa.com

218

19. J. Pearl. Heuristics. Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.

20. V. Prassana Kumar. Parallel Architectures and Algorithms for Image Understand
ing. Academic Press, Inc., Boston, 1991.

21. G. Sagerer. Darstellung und Nutzung von Expertenwissen fur ein Bildanalysesys
tem, volume 104 of Informatik-Fachberichte. Springer-Verlag, Berlin, Heidelberg,
New York, 1985.

22. G. Sagerer. Automatisches Verstehen gesprochener Sprache, volume 74 of Reihe
Informatik. B.I. Wissenschaftsverlag, Mannheim, 1990.

23. G. Sagerer, R. Prechtel, and H.-J. Blickle. Ein System zur automatischen Analyse
von Sequenzszintigrammen des Herzens. Der Nuklearmediziner, 3:137-154, 1990.

24. 1. Shastri. Semantic Networks: An Evidential Formalization and its Connectionist
Realization. Pitman and Morgan Kaufmann Publishers, Inc., London and San
Mateo, California, 1988.

25. L. Shastri. Why semantic networks? In J.F. Sowa, editor, Principles of Semantic
Networks. Explorations in the Representation of Knowledge, chapter 3, pages 109-
136. Morgan Kaufmann Publishers, Inc., San Mateo, Ca., 1991.

26. 1. Uhr. Parallel Computer Vision. Academic Press, Inc., Boston, 1987.

www.manaraa.com

Architectures for Parallel Slicing Enumeration
in VLSI Layout

Henning Spruth and Frank M. Johannes

Institute of Electronic Design Automation
Technical University of Munich, D-8000 Munich 2, Germany

Abstract. This paper presents parallel algorithms for solving the final
placement problem of rectangular cells with predefined neighborhood
relations. Optimum solutions for small cell subsets are obtained by enu
merating all arrangements, i.e. slicing structures. These solutions are
combined in a global construction step such that they fit well into the
global arrangement.
An increased size of the enumerated local subproblems leads to place
ments that are closer to a global optimum. However, this requires sig
nificantly larger computing resources. Parallel computers provide huge
amounts of computing power and memory that can be used to meet these
high demands.
In this paper, we present new algorithms to solve this problem on several
parallel architectures. By adjusting the granularity of the algorithm to
the properties of the specific target architecture, we achieve significant
speed-ups.

1 Introduction

The placement of rectangular cells of fixed or variable size is a combinatorial
optimization problem that is very hard to solve. Many solution methods have
been proposed based on simulated annealing, e.g. [1], partitioning by min-cut or
clustering, e.g. [2, 3, 4], and analytical methods like [5, 6].

Partitioning and analytical algorithms separate the placement task in two
subproblems:

the global (or point) placement phase which determines the neighborhood
relations of the cells, optimizing total net length
the final placement phase which generates a design rule correct cell arrange
ment, using the neighborhood relations as constraints and optimizing chip
area.

The advantage of these methods is a significantly shorter computation time
than usually consumed by annealing methods. However, the placement results
can be acceptable (i.e. close to a global optimum solution) only if both steps are
closely interlocked.

In this paper, we present parallel algorithms for the final placement. Based
on the principles of slicing [7] and shape functions [8, 9], a local enumeration

www.manaraa.com

220

algorithm [10] yields optimum results for the final placement problem of small
cell sets. These optimum results are then combined to a global solution whose
quality strongly depends on the size of the optimally solved local problems.
Therefore, it is crucial to enlarge the size of the local subproblems which becomes
feasible by supplying more computing power and memory. Since these resources
are available on parallel computers, we have developed concepts for parallel
enumeration algorithms [11]. In this paper, we show how these concepts are
successfully applied both to distributed- and shared-memory architectures.

Section 2 briefly introduces shape functions and the construction step, where
local solutions are combined in a global arrangement. In Section 3, a sequential
recursive enumeration algorithm [10) is discussed and compared with a nonre
cursive algorithm that produces the same result, but is parallelizable. Parallel
algorithms for the enumeration step are presented in Section 4. A coarsegrained
parallel algorithm is used to enumerate different subsets in parallel, while a fine
grained parallel algorithm speeds up the enumeration process for one individual
cell subset. By selecting the best combination of algorithms for different tar
get architectures, we achieve high speed-ups and good layout quality that are
presented in Section 5.

2 The construction phase

The goal of final placement is to minimize the wasted chip area Aw, which is
defined using the quotient of the area sum of all cells (with dimensions wI' and
hI') and the area of the computed cell arrangement (with dimensions Wo and
ho):

This is achieved in the following way:
As many other placement methods, e.g. [2, 3, 12], the global placement pro

cedure GORDIAN [6, 13) generates a partitioning tree by recursively partitioning
the set of cells to be placed. By additionally dissecting the available placement
area with horizontal or vertical cuts, the partitioning tree becomes a binary
slicing tree (see Fig. 1). Each node of the slicing tree represents a rectangular
region p = (xp, YP' M p, up, Pp, Fp) of the placement area with the coordinates of
the lower left corner x p and Yp, a subset of cells M p, and a label up E {c, e, h, v}
indicating whether a region is a single cell (c), un dissected (i.e. to be enumer
ated) (e) or dissected by a horizontal (h) or vertical (v) cut. In the finegrained
parallel algorithm which is executed on a set P of processors (see Section 4),
Pp E P is the processor that enumerates and stores all shapes of region p.

Fp = {(Wi, hi)lwi < Wi+l II hi > hi+1, 1 ::; i ::; n - 1} is the discrete
shape function [8, 9] containing the widths and heights of all area minimal ar
rangements of the cells in region p. This discrete function can be extended to a

www.manaraa.com

221

root node == chip v

leaf nodes == cells

Fig. 1.: Slicing tree

continuous integer staircase shape function fp (see Fig. 2)

W< WI
Wi ~W< Wi+l i= 1,00.,n-l

Wn ~W

or to an inverse integer staircase shape function f; 1:

h< hn

hi+l~h<hi i=n--l,Oo.,l
hI ~h

binary
tree

k-nary

tree

The shape functions of all nonleaf regions in the slicing tree can be computed
by adding the shape functions of their sons. Depending on the cut direction uP'
the shape function of a father region p is computed from its sons pi and p" by
the following addition operator:

{ fp = fpl + fpll if up = h
fp = fpl®fpll ¢} f- 1 - f- 1 + f- 1 'f -p - pi p" I Up - v

Starting with the enumeration nodes in the slicing tree, a bottom-up traversal
yields a shape function for the root region p = 0 of the slicing tree, which
corresponds to the whole chip. After selecting an appropriate shape (wo, ho) for
the chip, the coordinates of the lower left corners (xp, yp) can be computed for
all regions and cells in a top-down traversal of the slicing tree.

www.manaraa.com

h=/(w)

di cret hap function

222

•

-
w

continuou
hap function

h

Fig. 2.: Shape function of a rotatable cell

3 Slicing enumeration

1
1

w = rl(h)

continuous
hap function

The construction step described above is applicable if the shape functions of all
enumeration regions f Ene = {p I up = e} are known, which is immediately true
if each enumeration region contains only one cell. Unfortunately, large wasted
area (see Fig. 3), which may occur if cells with different sizes are combined in one
father region, decreases the area utilization of the resulting placement. A good
area utilization can be achieved only if shape functions of enumeration regions
consist of a large set of shapes. To generate such a set of shapes (i.e., a shape
function), slicing structures are enumerated for regions that contain more than
one cell but at most kmax cells.

Fig. 3.: Enumeration for a region with three cells

An enumeration algorithm with polynomial complexity [10] is used that pre-

www.manaraa.com

223

serves the neighborhood relation defined by the global placement coordinates
(xl" YI') of the cells. These coordinates are computed in the global placement
phase such that wire length is minimized with cells modeled as points [13]. To
enable a definite ordering, cells with equal x- or y-coordinates are separated
using a simple net cut model.

Figure 3 shows an example of the arrangements computed by the enumera
tion algorithm for a set of 3 cells {A, B, C}. Preserving the neighborhood relation
means here that cell A, e.g., is always placed at the left or on top of the other
cells.

The enumeration algorithm is based on the observation that shape functions
of alternative arrangements of two son regions can be combined in one shape
function by the minimizing union operation [12]. If, e.g., two son regions pi and
p" can be separated either by a horizontal or by a vertical cut, the resulting
shape function of the father region is computed as

For an enumeration region (: E R. e with k, = 1M, I :::; kmax , the time com
plexity of the enumeration algorithm is O(k~) and the memory usage increases
with O(k~). However, less chip area is wasted when the number of cells in an
enumeration region is increased [14] (see Fig 4).

Fig. 4.: Final placements of circuit ami33 for kmax = 7 (left) and kmax = 33 (right).
Note the much smaller wasted area in the right picture.

3.1 A recursive algorithm

The task of the enumeration algorithm shown in Fig. 5 is to calculate a shape
function for each region E E R. e which describes all area minimal cell arrange
ments that can be derived from slicing the point placement. This recursive pro
cedure first dissects the region by horizontal and then by vertical cuts into son
regions pi and p". For the cell subsets M / and M /' created by these dissections,
the same procedure is performed recursively. If the shape functions of the two
subsets are known, they are added either horizontally or vertically (operator ®

www.manaraa.com

224

For all f E R e call: Enumerate(M.);

procedure Enumerate (Mp)
if Up = 0)

for each (j E {h, v} 1* hor. and vert. cuts * /
Mp' := Mp; Mplf := 0;
while (IMp/l > 1)

if ((j = v) /L := >'0 I XAo = min (XA);
AeMp'

else /L := >'0 I YAo = min (Y>.);
>.eMp'

Mpl := Mpl\{/L}; Mpll := Mpll U {/L};
fpl := Enumerate(Mpl);
fpll := Enumerate(Mpll);
fp := min(fp; fpl@fpll);

end while
end for

end if
return (fp);
end procedure

Fig. 5.: Recursive enumeration algorithm

or @). This new shape function is then merged with the already known shape
function of region p.

Unfortunately, this recursive algorithm is not suited for parallel execution. We
will, however, show that careful analysis by means of a dependency graph leads to
independent subproblems that may be executed in parallel using a nonrecursive
enumeration algorithm.

3.2 The dependency graph

The treatment of the regions during enumeration leads to a dependency graph
that expresses the father-son relationships of all subregions used in the enumer
ation. The dependency graph is a directed acyclic graph consisting of a single
root node representing an enumeration region (E n°. The graph has k, leaf
nodes representing the k, cells inside the enumeration region. An arc leads from
node p to node p' if the shape function of region p' is required to compute the
shape function of region p. The set of all successors p' of a node p is defined as
follows using M p' = M p \ M p' :

www.manaraa.com

225

Geometrically, suc(p) can be interpreted as the set of subregions p' whose
cells J-I E Mp' lie all at the left, right , top, or bottom side of slice lines that
dissect the point placement of the cells J-I E Mp.

All subregions that are needed to compute the shape function of a region p
are called descendants, building the set des(p):

des(p) = p U U des(p')
p' ESUC(p)

Using these definitions, we obtain a dependency graph for an enumeration region
f. as {I, = (V"f,) with

V, = des(f.) and f, = {(p , p') I p' E suc(p)}

Figure 6 shows an example of a dependency graph. In this example, the shape
function of the subregion with Mp = {A,C} can be computed only if the shape
functions of the subregions with the cell subsets .M p' = {A} and MpH = {C}
are known.

A

• B point placement: c.
• 0

•

Fig. 6.: Dependency graph for an enumeration region with M. = {A , B , C, D}

3.3 A nonrecursive algorithm

If we want to parallelize the enumeration of a region, we have to remove the
recursion from the algorithm. After calculating all required subregions V, of the
enumeration region p, during initialization, we are able to process the depen
dency graph bottom-up, starting with the subregions containing only one cell
and ending at the enumeration region f. (see Fig. 7).

The nonrecursive algorithm requires some additional computational effort
to determine the nodes of the dependency graph , V,. This overhead can be
neglected, however , since it grows only with O(k:) , which is two orders below
the time complexity of the enumeration algorithm.

www.manaraa.com

226

For all f E n e call: Enumerate_nonrecursive(M e};

procedure Enumerate_nonrecursive(Me)
Ve = Determine_alLsubsets(Me};
for i := 1,2 ... ke

for each p E Ve with kp = i
for each 0" E {h, v} /* hor. and vert. cuts * /

Mp' := Mp; Mp'1 := 0; fp:= 0;
while (IMpll > I)

if (0" = v) J.L := Ao I XAo = min (XA);
AeMp'

else J.L := Ao I YAo = min (YA);
AeMpl

Mpl := Mpl\{J.L};Mpll := Mpll U {J.L};
fp := min(fp; fpl@fpll);

end while
end for

end for
end for
return (fp);
end procedure

Fig. 7.: Nonrecursive enumeration algorithm

4 Parallel slicing enumeration

4.1 Coarsegrained parallelism

The most obvious way to speed up enumeration is to apply coarsegrained paral
lelism by processing different enumeration regions (E 'Re simultaneously.

We use a client-server model of communication with the client sending enu
meration jobs to the servers where they are processed by one of the above de
scribed sequential algorithms. The assignment of enumeration regions to servers
is done dynamically: as soon as a server sends a computed shape function back
to the client it gets a new enumeration job. Due to the high complexity of the
algorithm, the processing time of different enumeration regions varies largely.
Therefore, regions that take a long time to enumerate are processed first in
order to achieve a good load balancing.

The small communication overhead required by coarsegrained parallelism
allows nearly linear speed-ups for sufficiently large kmax . A drawback of this
scheme is that the maximum size of an enumeration region, i.e. the parameter
kmax , is still bound by the size of a single processor's memory. On message
passing parallel computers that typically do not have virtual memory, storage
constraints allow only for relatively small values of kmax and hence for less
compact cell arrangements.

www.manaraa.com

227

4.2 Finegrained parallelism

In environments where memory is limited, it is sensible to parallelize the oper
ations on a single enumeration region so that the memory of all processors can
be used for shape function storage. This requires a parallel algorithm of finer
granularity.

The parallelization of the nonrecursive slicing algorithm consists of two main
parts: the determination of independent subproblems and the assignment of
subproblems to processors.

Independent subproblems. If the shape function of each region is initialized
to zero, we can define the set of regions whose shape functions are independent
and can be calculated in parallel:

readyset = {p I fp = 01\ V fpl::j:. O}
p' E suc(p)

An efficient way of calculating successive readysets is to assign subregions to
readysets according to their number of cells kp, which is the same as the level
of the region in the dependency graph (see Fig. 6). We increment the level from
1 to k" so that regions with equal kp are processed simultaneously. Using this
scheme, there are k, successive readysets.

Partitioning the dependency graph. When implementing the nonrecursive
algorithm on a parallel computer, the nodes of the dependency graph are dis
tributed among the processors. Each processor enumerates the assigned regions
and stores the calculated shape function in memory.

On shared-memory machines, the partitioning can be done dynamically, be
cause the processors have access to a common list of nodes that are not enu
merated yet. On distributed-memory machines, however, the partitioning has to
be calculated in advance to keep communication overhead low. Therefore, each
region p gets assigned a processor Pp during initialization.

This mapping Pp of regions to processors influences the algorithm in two
ways. If the mapping is unbalanced there will be idle processors most of the
time. Therefore, for each readyset, the mapping should try to minimize a load
balancing criterion, i.e. the variance of the number of regions per processor:

1 "'"' (I readyset I) 2
Cb = iPT L..J IPI -I{p E readysetlpp = p}1

PEP

On the other hand, there is a significant communication overhead when
shapes have to be requested from other processors. This overhead has to be
taken into account by minimizing a locality criterion which models the number
of these non-local requests:

Cl = L L ip,pl
PEV pIESUc(P)

'th I _ {I if Ppl ::j:. Pp
WI P pi - 'f ' 0 I Ppl = pp

www.manaraa.com

228

An optimum partitioning of the dependency graph must minimize Cb + aCI,
with a depending on the relation between communication cost and computing
power of the parallel target architecture. Such an optimum partitioning is very
hard to compute. We therefore use the following heuristic:

Starting with sets of regions R. = readyset and processors P, the mapping of
regions to processors is calculated by recursively bipartitioning both sets breadth
first. The R. and Pare bipartitioned into R.l, R.2 C R. and Pl, P2 C P such that
the following equations hold:

(1)

(2)

The sorting according to the center of gravity coordinates defined by equation 1
is a good heuristic to keep criterion CI small. Equation 2 assures that criterion
Cb is minimized. When bipartitioning the two subsets R.l and R.2, the coordinate
direction is alternated. The bipartitioning with alternating coordinate directions
is continued recursively until the number of region subsets equals IPI.

5 Implementations and results

We implemented the parallel slicing enumeration on three different target ar
chitectures and used it to generate placements of several macro cell benchmark
circuits [15] as well as industrial sea-of-gates designs [6].

5.1 Workstation network

This "parallel computer" consists of up to 20 DECstations connected byethernet
and running under the Unix operating system. They communicate using the p4
parallel programming library [16] based on the Unix socket mechanism.

Every node of this distributed environment has a large virtual memory and a
powerful processor. The throughput of the communication network, however, is
rather limited. Therefore, we use the principle of coarsegrained slicing enumera
tion: a master process running on one workstation distributes the enumeration
regions among the other workstations.

The speed-up of this approach, as defined by the ratio of the cpu time of the
sequential program and the real time required by the parallel program, can be
seen in Fig. 8 for a representative sea-of-gates circuit. The speed-up increases
linearly up to about 10 workstations where it levels off, while the variation of
the runtimes grows. The sublinear speed-up for large numbers of workstations
can be accounted for by the limited bandwidth of the communication network,
which leads to high latencies when many workstations are used. The increas
ing variation in runtime is due to the fact that the workstations have different
computing power and workloads: when more workstations are used, there is an

www.manaraa.com

229

increased possibility that a workstation with a high load or a slow processor has
to be used.

Note that while high speed-ups can be achieved using this setup, the maxi
mum useful value of kmax and hence the achievable result quality is still limited
by the amount of memory in one single machine.

speed-up

16

*

8

i *
t *

i * I • * ! * * ~
* * ; i • • *
=

III * •

12

$
*

* •
4

of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 processors

Fig. 8.: Speed-up of the workstation network for circuit sog3 and kmax = 30

5.2 Shared-memory machine

Our second architecture is a shared memory machine, a Sequent Symmetry with
eight i386 processors and a total of 40 megabytes of RAM. The operating system
is Dynix, an Unix variant with multiprocessor extensions. Besides the usual
Unix interprocess communication mechanism, it provides special facilities for
microtasking where multiple threads execute the same process [17].

The approach using coarsegrained parallelism is not practical on this ma
chine. Because all processors use the same memory and swap-disks, evaluating
n enumeration regions in parallel requires n times more memory, which leads to
excessive swapping and therefore to low speed-ups for high values of kmax .

The memory is more efficiently utilized by applying finegrained parallelism.
As described in the preceding section, the processors work together using the
non-recursive slicing algorithm: the dependency graph is processed bottom-up,
each processor computing the shape function of some of the nodes on the current
level. After the completion of each level, the processors have to synchronize to

www.manaraa.com

230

make sure that all shape functions that are required on the next level have
already been calculated.

The speed-up for the implementation on this machine using a macro-cell
circuit can be seen in Fig. 9. The speed-up is sublinear because some parts of
the slicing enumeration like initialization are not parallelized and because the
shared-memory machine could not be used exclusively in our test runs.

speed-up

8

6

'"

4

'"

2

O~---r---.---.---r---.---.---.---- # of processors
1 2 3 4 5 6 7

Fig. 9.: Speed-up of the shared-memory machine for circuit ami49 and kmax = 25

5.3 Distributed-memory machine

The third architecture is an iPSCj2 hypercube with 32 nodes, each containing
an i386 processor and 4 MB of RAM, running under the MMK operating sys
tem [18]. This type of machine is characterized by a limited amount of memory
per processor, the lack of virtual memory, and a fast communication network.

Because of the memory limitation, a single processor of the hypercube can
only enumerate regions containing at most approximately 20 cells. Therefore, we
have to use the finegrained approach, using the distributed memory of multiple
processors for shape function storage.

The nodes of the dependency graph are mapped to the processors using the
partitioning scheme presented in section 4.2. There are two lightweight tasks on
every processor. The compute task works on the dependency graph bottom-up,
calculating the shape functions and storing them in local memory. If during
enumeration the shape function of a region that is kept on another processor is
required, it is requested from that processor's server task.

www.manaraa.com

231

processor 1
local memory

0
compute ~ 0 0 read server

AC --task ~ ~O~OO task

t
• $ 0 0

\

processor 2 1
local memory f

0
compute ~ 0 • read server --task ~ 00 ••• task

C
0 0 • •

Fig. 10.: Processor tasks of finegrained parallel enumeration

In Fig. 10, two processors are working together on the dependency graph
shown in Fig. 6. The nodes assigned to a specific processor are shown in gray.
The compute task of processor 1 is currently computing the shape function of
region AG. To do that, it requires shape G and thus has to send a request to the
server task of processor 2, which fetches that shape from its local memory and
sends a message back to processor 1.

Because of its inherent communication overhead, the distributed-memory
finegrained parallelism usually yields a lower speed-up than the coarsegrained
approach. Therefore, we use a combination of both, allowing good speed-ups as
well as large kmax values.

The combined algorithm is similar to the coarsegrained approach, however a
single processor is replaced by a cluster of processors. The processors within a
cluster are working together on a single enumeration region using finegrained par
allelism. For each region, the cluster size is dynamically adapted to the amount
of memory required for the enumeration of that specific region. In this way,
we combine both the high speed-up of coarsegrained parallelism and the high
achievable quality of finegrained parallelism.

In order to calculate speed-ups for the hypercube, we needed execution times
for the sequential algorithm. Because a single node of the hypercube cannot
enumerate regions with k, > 20, we cannot measure the sequential execution
time on the hypercube and have to use the nonrecursive algorithm running
on a sequential computer with the same processor and clock frequency as the
hypercube as a reference.

The speed-up of the parallel algorithm for the industrial sea-of-gates circuit

www.manaraa.com

232

sog3 is shown in Fig. 11. For small values of kmax , the time to process an enu
meration job is in the order of the delay involved in sending it from the host
workstation to a processor cluster, resulting in poor speed-up. For kmax > 25,
however, the speed-up is approximately half the number of processors used. Note
that the minimum number of processors depends on the value of kmax due to
the high memory requirements.

In contrast to the other two approaches presented, the speed-up does not
level off for a high number of processors. This indicates that this algorithm has
a good scalability for larger processor counts.

speed-up

16

12

8

4

kmax = 35

kmax = 30

kmax = 25

kmax = 20

of
O~,,--.-----r----------.---------------------.

32 processors
124 8 16

Fig. 11.: Speed-up of the hypercube for circuit sog3

6 Conclusions

As a result of our investigations, we can state that the problem of slicing enu
meration is well suited for execution on parallel computers.

We are able to parallelize both the processing of different enumeration regions
and the calculations within a single enumeration region. This allows for a good
adaption of the procedure to different parallel architectures.

The reached speed-ups are, depending on the target architecture, between 0.5
and 1.0 times the number of processors used. The approach using finegrained
parallelism together with distributed memory promises a good scalability to
gether with the capability to enumerate larger cell subsets, yielding a higher
layout quality than on sequential computers.

Thus, the parallelization of the final placement problem allows us to cope
with the rapidly increasing circuit complexity of modern designs by achieving
excellent results in short time.

www.manaraa.com

233

Acknowledgements

The authors would like to thank Prof. K. Antreich for his support and valuable
suggestions.

References

1. C. Sechen, VLSI Placement and Routing Using Simulated Annealing. Kluwer Aca
demic, 1988.

2. U. Lauther, "A min-cut placement algorithm for general cell assemblies based on
a graph representation," 16th DAC, pp. 1-10, 1979.

3. D. P. LaPotin and S. W. Director, "Mason: A global floorplanning approach for
VLSI design," IEEE Trans. on CAD, vol. 5, no. 4, pp. 477-489, 1986.

4. W.-M. Dai and E. S. Kuh, "Simultaneous floor planning and global routing for
hierarchical building-block layout," IEEE Trans. on CAD, vol. 6, no. 5, pp. 828-
836, 1987.

5. L. Sha and R. W. Dutton, "An analytical algorithm for placement of arbitrarily
sized rectangular blocks," 22nd DAC, pp. 602-608, 1985.

6. J. M. Kleinhans, G. Sigl, and F. M. Johannes, "GORDIAN: A new global opti
mization / rectangle dissection method for cell placement," ICCAD, pp. 506-509,
1988.

7. A. A. Szepieniec and R. H. J. M. Otten, "The genealogical approach to the layout
problem," 17th DAC, pp. 164-170, 1980.

8. R. H. J. M. Otten, "Efficient floorplan optimization," ICCD, pp. 499-501, 1983.
9. L. Stockmeyer, "Optimal orientations of cells in slicing floorplan designs," Infor

mation and Control, vol. 57, pp. 91-101,1983.
10. L. P. P. P. van Ginneken and R. H. J. M. Otten, "Optimal slicing of plane point

placements," EDAC, pp. 322-326, 1990.
11. H. Spruth and G. Sigl, "Parallel algorithms for slicing based final placement,"

Euro-DAC, pp. 40-45, 1992.
12. G. Zimmermann, "A new area and shape function estimation technique for VLSI

layouts," 25th DA C, pp. 60-65, 1988.
13. J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, "GORDIAN: VLSI

placement by quadratic programming and slicing optimization," IEEE Transac
tions on Computer-Aided Design, vol. 10, no. 3, pp. 356-365, 1991.

14. G. Sigl and U. Schlichtmann, "Goal oriented slicing enumeration through shape
function clipping," EDAC, pp. 361-365, 1991.

15. MCNC International Workshop on Layout Synthesis, Microelectronics Center of
North Carolina, Research Triangle Park, NC, 1990.

16. E. L. R. Butler, "User's guide to the p4 parallel programming system," 1990.
17. A. Osterhaug, Guide to Parallel Programming on Sequent Computer Systems. Se

quent Computer Systems, 1987.
18. T. Bemmer! and T. Ludwig, "MMK - a distributed operating system kernel with

integrated dynamic loadbalancing," CONPAR 90 - VAPP IV Conference, 1990.

www.manaraa.com

Application of Fault Parallelism to the
Automatic Test Pattern Generation for

Sequential Circuits

Peter A. KRAUSS and Kurt J. ANTREICH

Institute of Electronic Design Automation
Technical University of Munich, Germany

Abstract. The task of automatic test pattern generation for sequential
circuits is to find test sequences which detect a difference between the
faulty and the fault-free circuit. Since this task typically requires consid
erable computational resources, it provides a challenging application for
parallel computer architectures.
The approach proposed here considers fault parallelism, supplying every
processor with a certain number of target faults, depending on the job
size. Every processor does the test pattern generation and subsequent
fault simulation for its faults and then returns back the generated test
sequence and all target faults detected by this test sequence to a con
trolling process.
The algorithm for partitioning the set of target faults among the number
of available processors depends critically on the following three criteria:
computation time, fault dependency, and job size.
We implemented our approach on various computer architectures, such as
an iPSC/860 HyperCube and networks of workstations (DEC and HP).
All implementations use the server/client communication model.
The parallel test pattern generation algorithm has been validated with
the ISCAS'89 benchmark circuits, and we achieved a nearly linear speed
up.

1 Introduction

The circuit has to be tested after its manufacture. A conceptual approach to
testing is shown in Fig. 1.

The circuit under test is a sequential circuit with memory elements and
requires that test patterns are applied in a specific order. Using a set of test se
quences, applied to both the manufactured circuit and the circuit model which
is simulated, we compare the responses at the respective outputs. If both out
puts are equal, the circuit is considered to be fault-free, otherwise the circuit is
faulty [1].

We model the circuit at the gate level. The faults we consider are single
stuck-at faults. Under this assumption there exists only one fault within the
circuit, this fault being a constant 0 or a constant 1.

The test sequences should detect all modeled faults and report a fault cov
erage of 100% if feasible. Furthermore, the test sequences should be as short

www.manaraa.com

235

Stimuli: Test Patterns

01011100

Simulation :f}
of Circuit

Model

Fig.!. Testing a Circuit

Comparator

Circuit Ok?

as possible to reduce the test application time, thereby lowering the production
costs.

The generation of the test sequences can be done in several ways. For se
quential circuits, a combination of the deterministic test generation and the
fault simulation has proven to be most efficient.

However, it has been shown that the problem of test generation is NP-hard
even for combinational circuits [2, 3]. Larger circuits have a computation time
of several days, sometimes even weeks.

It will be shown, that the usage of parallel computers may help to speedup
the automatic test pattern generation process.

This article is organized as follows. Section 2 introduces the definitions and
preliminaries. The basic principles of the automatic test pattern generation are
described in Section 3. Section 4 presents the application offault parallelism and
Section 5 discusses the achieved results. Conclusions are summarized in the last
section.

2 The Test Problem

Integrated circuits provide no access to their internal signals. Therefore, the
excitation of a fault and the observation of its effect has to be done by using
only the external connections.

The problem of automatic test pattern generation may be formulated with
help of a deterministic Finite State Machine (FSM) model, shown in Fig. 2.

www.manaraa.com

236

o

q

Fig.2. Finite State Machine

The fault-free FSM A becomes the faulty FSM AI' due to a fault p,:

A = (Q,E,<1,6,A) ~ AI' = (Q, 17, <1,01', AI') (1)

Q = {qo, ql, . .. , qr} : set of states
E={io, i1 , . . . ,in } : input alphabet
<1 = {oo, 01, .. . , Om} : output alphabet
o Q x 17 -> Q : transition function
A : Q x 17 -> <1 : output function

The task of automatic test pattern generation is to find an input sequence
which excites the fault on the internal gate and assures the observation on at
least one output:

t E X' qo E Q
A(6(qo, i), z) # AI'(ol'(ql;, i), z) (2)

z E X q~ E Q

E· denotes sequences constructed by concatenating any number of test pat
terns from 17 [4]:

00

E· = U Ei, EO = {e}, .0: empty string (3)
;=0

The condition (2) indicates that there exists at least one test sequence for
which the output function A of the fault-free FSM A produces a different result
than the output function AI' of the faulty FSM AI' after having read the last
test pattern z, independent of the initial state of the fault-free FSM A and of
the faulty FSM AI' .

The complement of (2) gives the condition for untestable faults :

t E X' qo E Q
A(o(qo,i),z) = AI'(OI'(qb,i),z) (4)

z E X q~ E Q

Here, for all possible test sequences, there exists at least one initial state of
the fault-free FSM A and one of the faulty FSM AI', where the output functions
A and AI' evaluate to the same value.

www.manaraa.com

237

3 The Automatic Test Pattern Generation

The automatic test pattern generation is performed in several phases [5, 6], as
shown in Fig. 3.

First, we read the circuit netlist. In the preprocessing phase, we analyze the
circuit and compile a list of the faults which are to be considered. These faults
are designated as the target faults [7].

During the preprocessing phase some faults are recognized as untestable.
These faults can not be tested by any test sequence, possibly because of some
circuit redundancies. Therefore, these untestable faults can be removed imme
diately from the target fault list.

The automatic test pattern generation is performed for the remainder of the
target faults. We consider one fault at a time, and attempt to generate a test
sequence which detects this fault.

The test pattern generation is based on a search in a decision tree, using a
heuristic to control the backtracking.

/ ./
Read NeHist of Circuit

~ I'··
Preprocessing Phase

~
for all faults: ~

Test Pattern Generation
/

Fault Simulation

~
Fig. 3. Automatic Test Pattern Generation

Figure 4 shows the symbolic representation of a decision tree, which is divided
into three areas: the potential solution area (white), the known non-solution
area (dark), and the unknown non-solution area (hatched) [8].

The algorithm starts at the top of the triangle, trying to find a path to one
of the solutions, which are located at the bottom of the triangle. When reaching
the known non-solution area, a backtracking is done to return into the potential
solution area. The unknown non-solution area is the region, where it is not yet
known that the algorithm will not find a solution. It is the task of heuristics to
keep the unknown non-solution area as small as possible, thereby reducing the
number of further wrong decisions and subsequent backtracks. Every additional
backtrack implies wasted computational resources.

www.manaraa.com

238

D potential solution area

~ unknown non-solution area

_ known non-solution area

Fig. 4. Symbolic representation of the decision tree

If the search takes too much time or costs too much memory, it is aborted.
A successful search returns either of the two results:

- a test sequence was generated, or
- the fault was detected to be untestable.

If a test sequence was generated, a fault simulator determines subsequently
additional faults as also detectable by this test sequence. The computation time
of a fault simulation is much less than the computation time of a test pattern
generation, thereby accelerating the overall automatic test pattern generation
process considerably.

All detected faults are removed from the target fault list. This process IS

repeated until the list is empty.

4 The Fault Parallelism

There are different possibilities to parallelize the automatic test pattern gener
ation process. Fault parallelism for combinational circuits has been considered
in [9]. The approach proposed here considers fault parallelism for sequential
circuits.

The fault parallelism implies a distribution of the target fault list among the
available processors. This can be done in two ways. The target fault list can be
managed either by the processors themselves or by a central control processor.

4.1 The Distributed Self-Management

A communication model best suited for the self-management approach is one
where all processors are fully meshed, as shown in Fig. 5.

In this approach, the target fault list is initially divided among the working
processors, named workers, by using some criteria. A worker which finishes its
assignment and becames idle, sends a request to the non-idle workers for a part
of their unprocessed fault list.

As the run nears completion, the number of messages sent between the pro
cessors will increase considerably because of the shrinking size of the fault lists.
This can be avoided by partitioning the lists only to a given granularity [10].

www.manaraa.com

239

Fig. 5. Fully meshed working processors

4.2 The Central Control Management

The central control management is realized with a communication model based
on a star topology, as shown in Fig. 6.

Here, a central control processor, named controller, keeps the whole tar
get fault list. An idle worker requests one or more faults from the controller.
Therefore, the controller has the possibility to select the faults which are to be
processed next according to following criteria:

- fault dependency,
selected job size, and

- estimated computation time.

We discuss the fault dependency in the next section.

Fig. 6. Using a central control processor

www.manaraa.com

240

4.3 The Fault Dependency

The concept offault dependency is illustrated in Fig. 7. Given one target fault <p,
the test pattern generation ATPG produces a test sequence t. The fault simu
lation FSIM uses this sequence t to determine additional faults which are also
detected by this sequence.

all modeled Faults

Target Fault

$
Test Sequence

$
Detected Faults

Fig. 7. Fault Dependency

Faults, which are detected by the same test sequence are called dependent
on each other:

3
tEE·
z E E

This dependency may be partially calculated during the preprocessing phase.
If one processor works on the fault /-l, while another processor finds a test

sequence for another fault v which detects also /-l, the computation time spent
on the fault f.1 is wasted.

Therefore, dependent faults should not be distributed to different processors
at the same time. Hence, the dependency relations obtained during the prepro
cessing phase have to be considered [9, 10, 11].

In addition, by supplying only one single fault to the requesting processor, we
further reduce the chance of processing the same faults by multiple processors.
Starting with moderately large circuits, the computation time for each fault is
much higher than the communication time. This is an additional reason, why
we can improve performance by distributing single faults only.

www.manaraa.com

241

4.4 Implementation Details

As mentioned before, an idle worker requests one fault for processing from the
controller. The result sent back to the controller is either the eventually generated
test sequence together with faults detected from this sequence, or this fault
is reported untestable. A third possible reply is, that the search was aborted
because of excessing some resource limits.

The controller removes all reported faults from its target fault list, including
the aborted faults. Next, a new target fault is given to the worker that has just
completed the previous task.

This method of requesting workers has several advantages:

1. As already mentioned, the controller has the possibility to select the job
sequence by various criteria.

2. A dynamic load balancing is achieved automatically. The generation of the
test sequences for different faults needs different computation time. It is not
possible to calculate this time in advance. An estimation by some heuristics
could be done [9]. However, the computation time may also vary because of
some load from other processes on the same processor. Also, the usage of
different hardware results in different computation times.

3. If a worker fails, it will not block the other workers and the controller. While
the other worker will continue to work, the task given to the failed worker
will be reassigned to another worker later on. Hence, nothing is lost by the
failure of some workers. The controller terminates after having a result for
each fault of its list.

5 Results

The parallel test pattern generation algorithm has been validated with the
ISCAS'89 benchmark circuits [7].

5.1 Speedup on the HyperCube

Results achieved on an Intel iPSCj860 HyperCube are shown in Fig. 8. The
diagram illustrates the relationship between the number of workers, the total
sum of computation time for the test generation and subsequent fault simulation
for different circuits, and the achieved speedup.

The speedup used here is the relation of the computation times of one worker
to n workers. Every line running from left to right marks the computation times
of the same circuit (e.g. s1423) for a growing number of workers. Every line
running from the front to the back marks the computation times of different
circuits for the same number of workers.

As can be seen in the diagram, the achieved speedup of the larger circuits is
being kept when the number of workers grows. These circuits reach an almost
linear speedup. With 15 workers we achieve a speedup of 14.5.

www.manaraa.com

242

10

9
11 13

15 Workers

··:·:'f-14.57

~~r ... :

5000

····i

10000

7500

Computation Time [sec]

Fig. 8. Speedup in relation to the number of workers and computation time, achieved
on the HyperCube

_ working Whl idle

Workers

• o 1000 2000 3000 Time (sec I

Fig. 9. Usage of the HyperCube

www.manaraa.com

243

Of interest is also the comparison of the computation time of different cir
cuits with the achieved speedup at a constant number of workers. With growing
computation time the almost linear speedup is achieved very quickly.

The observable break-ins will be discussed later on.

5.2 Usage of the HyperCube

Figure 9 shows a typical usage of all processors during test generation and fault
simulation. All workers are running without any waiting times, while the con
troller works only at the few times which are marked by dark lines. Those mes
sages show that the controller has only very little load from serving the workers.

We see the case where more than one worker is ready and has to wait until
the controller can serve it only rarely. Also, the next fault is selected very fast,
so that the interruption of the worker is minimal. Therefore, the controller is
capable of handling a much larger number of workers.

5.3 Speedup on the Workstations

Results achieved on a network of workstations are shown in Fig. 10. The network
consists of 110 Workstations HP 9000/720. Like Fig. 8, the diagram shows the
relationship between the number of used workers, the total sum of computation
time for the test generation and subsequent fault simulation for different circuits,
and the achieved speedup. Using 100 workers, we achieve a maximal speedup
of 88.

The already mentioned break-ins are clearly visible here. These circuits have
a higher computation time per fault than the circuits which form the rising slope,
but the total number of faults is too small to gain a dynamic load balancing on
the number of used workers. The computation time of some faults dominate over
the rest, they set the time needed for their circuit independent of the number of
used workers. The speedup is saturated already at low number of workers.

6 Conclusion

We have demonstrated that the automatic test pattern generation is well suited
for application of parallel methods. Our experiments were successful not only
for special parallel computers, but also for networks of workstations.

The ongoing research is considering next the parallelism of the search tree,
which belongs to the area of OR-parallelism. Previous works done for combina
tional circuits have reported good results [12].

Using fault parallelism, one processor handles one fault, where as the OR
parallelism takes all processors to work on the solution for one fault. This allows
the search for the hard-to-detect faults, a case where the search based on earlier
methods had to be aborted.

www.manaraa.com

244

Workers 90 100

7000
6000

5000
4000

3000
2000

1000

Computation Time [sec]

Fig. 10. Speedup in relation to the number of workers and computation time, achieved
on the network of workstations

References

1. E. Horbst, M. Nett, and H. Schwartzel. Venus Entwurf von VLSI-Schaltungen.
Springer-Verlag, Berlin, 1986.

2. O. H. Ibarra and S. K. Sahni. Polynomially complete fault detection problems.
IEEE Transactions on Computers, pp. 242-249, 1975.

3. Hideo Fujiwara and S. Toida. The complexity of fault detection problems for
combinational logic circuits. IEEE Transactions on Computers, pp. 555-560, 1982.

4. John Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan
guages and Computation. Addision-Wesley, Reading, 1979.

5. Michael H. Schulz and Elisabeth Auth. ESSENTIAL: An efficient self-learning
test pattern generation algorithm for sequential circuits. Proceedings International
Test Conference, pp. 28-37, 1989.

6. Elisabeth Auth and Michael H. Schulz. A test-pattern generation algorithm for
sequential circuits. IEEE Design €;I Test of Computers, pp. 72-86, 1991.

7. Franc Brglez, David Bryan, and Krzysztof Kozminski. Combinational profiles of
sequential benchmark circuits. IEEE International Symposium on Circuits and
Systems, pp. 1929-1934, 1989.

8. Michael H. Schulz, E. Trischler, and T. M. Sarfert. SOCRATES: A highly effi
cient automatic test pattern generation system. Proceedings International Test
Conference, pp. 1016-1025, 1987.

9. Hideo Fujiwara and Tomoo Inoue. Optimal granularity of test generation in a
distributed system. IEEE Transactions on Computer-Aided Design, pp. 885-892,
1990.

www.manaraa.com

245

10. Srinivas Patil and Prithviraj Banerjee. Fault partitioning issues in an integrated
parallel test generation / fault simulation environment. IEEE Proceedings Inter
national Test Conference, pp. 718-726, 1989.

11. Sheldon B. Akers and Balakrishnan Krishnamurthy. Test counting: A tool for
VLSI testing. IEEE Design & Test of Computers, pp. 58-73, 1989.

12. Srinivas Patil and Prithviraj Banerjee. A parallel branch and bound algorithm
for test generation. IEEE Transactions on Computer-Aided Design, pp. 313-322,
1990.

www.manaraa.com

Parallel Sorting of Large Data Volumes on Distributed
Memory Multiprocessors

Markus Pawlowski, Rudolf Bayer
Institut fUr Informatik, Technische Universitlit MUnchen

Arcisstr. 21, 0 8000 Mtinchen 2, Germany
e-mail: {pawlowsklbayer}@informatik.tu-muenchen.de

Abstract. The use of multiprocessor architectures requires the parallelization of sorting
algorithms. A parallel sorting algorithm based on horizontal parallelization is presented.
This algorithm is suited for large data volumes (external sorting) and does not suffer
from processing skew in presence of data skew. The core of the parallel sorting algo
rithm is a new adaptive partitioning method. The effect of data skew is remedied by tak
ing samples representing the distribution of the input data. The parallel algorithm has
been implemented on top of a shared disk multiprocessor architecture. The performance
evaluation of the algorithm shows that it has linear speedup. Furthermore, the optimal
degree of CPU parallelism is derived if I/O limitations are taken into account.

1 Introduction
Data sorting plays an important role in computer science and has been studied exten
sively [23]. The problem of sorting is easily understood. In the sequential case, sorting
of N tuples (i.e. data items) has at least a complexity of O(N . log (N)) . Sorting is fre
quently the basis of more complex operations. The use of multiprocessor architectures
renders the parallelization of sorting indispensable. First approaches were sorting net
works introduced by Batcher [3]. Since then a lot of literature concerning parallel sort
ing has been published. A complete survey of this literature is beyond the scope of this
paper. However, three fundamental approaches can be recognized in order to parallel
ize a sorting algorithm. In the following these approaches are discussed to obtain a
general knowledge of them:
• One possibility to implement parallel sorting algorithms is to implement them in

hardware. The progress in VLSI makes this approach promising. Although the archi
tecture of parallel sorting chips differs in details, the paradigm used is vertical paral
lelism (cf. section 2). In [17] simple sort-merge-cells are placed in a binary tree
topology in order to build a powerful parallel sorting hardware. The scheme of the
rebound-sorter of [13] is used in [18] to design a parallel sorting chip. A rebound
sorter consists of 2 coupled arrays passed by the data streams. A rebound-sorter is
comparable to systolic algorithms .

• The second approach has its origin in abstract parallel machine models like the
PRAM (Parallel Random Access Machine). A parallel implementation of the merge
sort algorithm is proposed by Cole [14]. It sorts N tuples in time O(log (N)) using
N processors of a CREW-PRAM (Concurrent Read Exclusive Write PRAM). Other
authors (e.g. Bilardi et al. [10]) modify the so-called bitonic sorting algorithm (cf.
Batcher [3]) to achieve a parallel sorting algorithm. It sorts N tuples in time
O(Nlp· log (Nip)) using p processors. In contrast to the CREW-PRAM algorithm
of Cole [14], here the degree of parallelism is not dependent on the number of input
tuples. The algorithms of this class can be implemented on a shared memory multi
processor.

www.manaraa.com

247

• Distributed memory multicomputers are the starting point of the third approach.
Limitations of real systems are taken into consideration. Furthermore, the influence
of a memory hierarchy (main memory vs. disk memory) is investigated. The litera
ture contains lot of proposals (e.g. [4], [7], [16], [22] and [26]) on how to sort large
volumes of data in parallel on top of a distributed memory multicomputer. The prin
ciple of the parallel sorting algorithms is similar and has its root in the well known
external sorting algorithms as described by Knuth [23] or Aho et al. [1].

We designed a new parallel sorting algorithm belonging to the third class. The reasons
are the following:
• Our prime premise is to use off-the-shelf hardware in order to explore possibilities of

parallelism for database management systems. Therefore we do not consider the first
approach. Another premise is to investigate the impact of massive parallelism on
database management systems. Therefore shared memory multiprocessors (second
approch) will not be used, as they do not scale well enough for our purposes.

• Sorting plays an important role during query evaluation [24]. The relational database
system TransBase [33], which we use in our research project [25], implements dupli
cate elimination and a variant of join (sort merge join) by sorting the input operands.
Since the database itself resides on secondary storage and query evaluation is done in
main memory, the interaction between main memory and secondary memory has to
be taken into account. This rules out the first and second approaches, too.

• A further reason is our cooperation with another research group providing the pro
gramming environment MMK [8] and TOPSYS [9] on top of a distributed memory
multicomputer. In this way feedback can be obtained about the suitability of MMK
and TOPSYS for developing parallel programs.

Our new parallel external sorting algorithm is based on data parallelism. Each proces
sor sorts one data partition. Load imbalance is avoided by a new, efficient data parti
tioning algorithm. It does not sample the input data as in [16]. It samples the presorted
initial runs. Hence it can limit the maximum load imbalance due to data skew which
might occur. Therefore the partitioning algorithm is a component of our parallel sort
ing algorithm.

The remainder of the paper is organized as follows: Section 2 gives a brief introduction
into the paradigms of parallel programming. In section 3 the horizontal paradigm is
applied to the problem of parallel sorting. A new adaptive partitioning algorithm is
introduced in section 4. Section 5 shows the implementation and performance results.
The paper concludes in section 6 with a summary and future work. The appendix puts
together the parameters used throughout this paper.

2 Paradigms of Parallel Programming
Horizontal parallelism is based on data-partitioning and works as follows: The input
data is partitioned into independent data partitions (splitting phase). Each partition is
subsequently processed by a single processor performing the usual sequential algo
rithm (parallel processing phase). Then the intermediate results computed by the paral
lel processing phase are collected into one final result (integration phase). Horizontal
parallelism accellerates the sequential algorithm, if the overhead due to the additional
splitting and integration phases is low and if load imbalance does not result from

www.manaraa.com

248

unequally sized data partitions.
Vertical parallelism exploits the fact that a complex task can be divided into several
subtasks which have to be processed in a pipelined manner (i.e. temporally over
lapped). By that means a parallel execution is obtained. The parallel processing time is
reduced, if the subtasks have nearly the same processing time and if the communica
tion costs are low w.r.t. the processing costs of one subtask.
Figure 1 compares horizontal parallelism with vertical parallelism.

j
.g 1

.

sequential vertical parallelism horizontal parallelism

Fig. 1. Vertical and Horizontal Parallelism

3 Parallel External Sorting
The horizontal parallelization is applied to an algorithm performing external sorting.
To have a common starting point, the usual sequential algorithm is described. After
having presented the multiprocessor architecture of the target machine, first perfor
mance predictions of a parallel external sorting algorithm are presented. Finally the
sequential sorting algorithm is parallelized horizontally. The paradigm of vertical par
allelism is not applied, because it is not practicable.

3.1 Sequential External Sorting Algorithm
Sorting of tuples normally takes place in main memory. But if the amount of data to be
sorted exceeds the capacity of the available main memory, the use of secondary storage
is inevitable. The number of I/O accesses should be minimized. Most of the sorting
process still takes place in main memory. For the sake of simplicity, we assume that the
input tuples to be sorted are located in a file on secondary storage (input file) and that
the sorted result tuples are stored in a file (result file), too. External sorting consists of
two phases [23]. Refering to figure 2, the two phases are explained in detail.
During a so-called presort phase main memory is organized as a heap providing space
for h tuples. All input tuples are pumped through main memory once, in the course of
which they are presorted and stored in m so-called initial runs IRi (1 ~ i ~ m) . The
size of each initial run is as large as the heap in main memory at least. We can estimate
m by the following formula:

m~N/h (1)

www.manaraa.com

249

The CPU -time complexity of the presort phase is O(N . log (h)). This results from the
fact that each tuple has to be inserted into and deleted from the heap exactly once. The
I/O complexity of 0 (N) during the presort phase is caused by the need of loading
(storing) each tuple from (into) secondary storage exactly once.
During a so-called merge phase the m initial runs 1Ri are merged to compute the
sorted result file. We use m -way merging to minimize the I/O accesses. Details can be
found in [5] and [6]. The I/O complexity of the merge phase is equal to the I/O com
plexity of the presort phase, since again each tuple has to be loaded (stored) from (into)
secondary storage exactly once. The CPU-time complexity of the merge phase is

O(N' log (m» . It is not linear in the problem size, since the number of initial runs
depends linearly on the problem size.

OIl
.5
5 e
c..

___________ _________ J ___________ __________ J

presort phase mergeYphase

Fig. 2. External Sorting (Sequential Version)

3.2 Computer Architecture
Our target architecture is a shared disk multiprocessor. This architecture belongs to the
family of distributed memory multiprocessors, which can be divided into shared disk
[30] and shared nothing multiprocessors [31]. The structure of the two distributed
memory multiprocessor architectures is shown in figure 3. Distributed memory multi
processors consist of multiple nodes connected by a fast communication network. A
processor and local main memory belong to each node. The processors can only access
their local memory directly. They cannot access remote memory of other nodes. A glo
bal shared memory does not exist. Interprocessor communication is realized by mes
sage passing. Shared disk and shared nothing multiprocessors differ in the way how
the secondary storage is connected to the processing elements.
Unlike main memory, secondary storage of shared disk multiprocessors is a subsystem
of its own. Shared disk multiprocessors are characterized by the location and access
transparency of the secondary storage [12]. The access to secondary storage is done by
the fast communication network. This property makes it possible to think of the sec
ondary storage as one large virtual device, even if it consists of many small devices.
The access times to secondary storage are independent of the processors location. Our
parallel external sorting algorithm exploits this transparency to a large extent.
The properties of access and location transparency cannot be found at shared nothing
multiprocessors. This architecture is characterized by the fact that each node has its
dedicated secondary storage. Each processor can only access this directly attached sec
ondary storage. Prominent representatives of shared disk mUltiprocessors in the data
base area are systems like Bubba [11], Gamma [15], Prisma [2] and Teradata [32].
The way in which our sorting algorithm exploits the access and location transparency
of secondary storage distinguishes it from the algorithms in [4], [7], [16] and [26],
which are based on shared nothing architectures. Our algorithm discards the shared

www.manaraa.com

250

nothing paradigm, as it is not open to high performance new disk technologies like
RAIDs (cf. [28] and [19]). RAIDs offer the location and access transparency needed
by our algorithm.

network

Shared Nothing Shared Disk

Fig. 3. Shared Disk vs. Shared Nothing

3.3 Optimal Parallel Run Time
In the sequential case, the run time of an external sorting algorithm has a lower bound
which is determined by the transfer rate to secondary storage. Even in the parallel case,
the run time of sorting is at least as high as the (parallel) transfer time needed to read
and write all input tuples twice (once for the presort phase and once for the merge
phase). An optimal parallel external sorting algorithm should have a run time near to
that lower bound.

The parallel external sorting algorithm should exploit the I/O and CPU power of multi
processors. But neither a significant I/O nor a significant CPU bottleneck can be
accepted. In the following we assume that the transfer rate to secondary storage is a
fixed system parameter whereas the degree of CPU parallelism can be chosen freely
within the capability of the given system. This reflects the target architecture chosen
for our research. In general, the I/O-subsystem of a shared disk multiprocessor has
such a high performance that CPU parallelism is inevitable to yield a system without
bottleneck. The CPU parallelism should be increased until a run time balance between
CPU and I/O is obtained. This degree of CPU parallelism is called balanced parallel
ism (d in figure 4). The problem is now how to design a parallel external sorting algo
rithm which is effectively scalable. The term effective scalability expresses the
property of a parallel external sorting algorithm having linear speedup characteristics
up to the point of balanced parallelism. Figure 4 illustrates the above discussion.

run time

i
lower bound . ,.'1' ... , .. , .. ,: :, .. ,:, .. " , '"

i d

effectively scalable (linear speedup)
not effectively scalable

CPUs

Fi.g. 4. Run Time of a Parallel External Sorting Algorithm

www.manaraa.com

251

3.4 Parallelization of External Sorting
In this paper we do not apply the paradigm of vertical parallelism to parallelize the
external sorting algorithm. The reason is that in a distributed memory environment the
costs of interprocessor communication have a high threshold value. In order to mini
mize the amount of communication it is necessary to build packets of tuples which are
sent from one subtask of the pipeline to the next one, instead of sending the tuples
alone. Each subtask has to unwrap the incoming packets in order to extract the tuples
to be processed. Furthermore after processing the tuples, they have to be wrapped up
by each subtask for the outgoing packets which are sent to the next subtask. The han
dling of the communication packets is very CPU intensive and cannot be parallelized,
because each subtask has to deal with all tuples and their packaging. Measurements
have shown that in case of external sorting the processing of the communication pack
ets takes up 80% of total CPU time. The ratio becomes even worse if the degree of par
allelism increases, as the processing time for the communication packets in each
subtask is invariant with the degree of vertical parallelism.

Therefore we apply the paradigm of horizontal parallelism. The parallel processes can
do their jobs without communication between each other, because their jobs are inde
pendent from each other. Thus the performance of the parallel algorithm does not
depend on interprocessor communication costs in such a crucial way as it is the case
with vertical parallelism.
However, a similar packaging mechanism as described in the previous paragraph must
be implemented in order to access the tuples stored on secondary storage. In contrast to
vertical parallelism this kind of packaging can be easily parallelized, because the pro
cesses of the horizontally parallelized external sorting algorithm just work on a data
partition instead of on all tuples.

Because the presort phase and the merge phase of the external sorting algorithm cannot
be overlapped 1), the two phases of the parallel version are explained in distinct subsec
tions. The paradigm of horizontal parallelism is applied to transform the sequential
algorithm (cf. section 3.1) to a parallel one.

3.4.1 Presort Phase. The presort phase is performed by p processors Pj (I ~ j ~ p)
in parallel. In accordance with figure 1, we describe the three phases (splltting, parallel
processing and integration phase) of the horizontally parallelized presort phase in
figure 5.

I R I. I F=====t

input file
open + lseek

Fig. 5. Horizontally Parallelized Presort Phase

1) Recall: In order to merge the initial runs during the merge phase, the presort phase has to be
completed.

www.manaraa.com

252

The input data must be split into p equally sized data partitions. The input file is stored
on secondary storage having the property of access and location transparency, there
fore each processor Pj can access the input file directly. The splitting of the input data
can be done logically by simple commands of the operating system. The start and end
positions of the data partitions are computed by simple arithmetic. It is not necessary
to move the input data physically during the splitting phase. Furthermore this simple
splitting phase guarantees that all data partitions have equal size.
Now the p data partitions of the input file can be processed in parallel and indepen
dently. Each processor P Lapplies the usual sequential algorithm to construct its initial
runs IRj , i (1 ~ i ~ m) . The initial runs are stored on secondary storage.
The final integration phase can be omitted, since the intermediate results are already in
a form (set of initial runs) which can be processed by the following merge phase of the
external sorting algorithm. The omission of the integration phase is due to the access
and location transparency of the secondary storage.
Taking a closer look on the theoretical run time of the paralleJized presort phase, we
recognize a linear speedup. The parallel presort phase does not bear any additional
costs because of the splitting and integration phases. The linear complexity of the pre
sort phase deduced in section 3.1 together with the property that the data partitions are
equally sized guarantees this linear speedup.
3.4.2 Merge Phase. The merge phase of the external sorting algorithm is performed
by p processors Pj (1 ~j ~ p) in parallel. The m initial runs IRi (1 ~ i ~ m) form
the input. In order to parallelize the merge phase horizontally, the initial runs IRi must
be split into p independent data partitions Dj . Two methods are possible to accomplish
the data partitioning:
SETPART. This method is very simple and straightforward. It divides the set of the m
initial runs IRi into p disjunct subsets Dj . Each subset Dj contains m/p initial runs
(cf. figure 6, left part).
KEYPART. This method is explained by figure 6 (right part), too. It splits each initial
run IRi into p regions Ri,j (l ~ i ~ m, 1 ~j ~p) . The borders of the regions are
determined by the value of (p + 1) splitting keys kj . They must obey the following
condition:

ko ~ kl ~ k2 ~ ... ~ kp (2)

The value v of the sorting attribute of each tuple residing in region R. . lies between
'1-1 and kj" Each region Ri,j itself is a small initial run. Now definela'data partition
Dj to be the set of m small irntial runs:

'tJ(l ~j~p) :Dj = {R1,j' ... ,Rm} (3)

The splitting phase does not move any data neither by the SETPART nor by the KEY
PART method. Because of the access and location transparency of the secondary stor
age the computation of the p data partitions Dj can be performed logically. Even the
splitting of the initial runs into smaller ones can be done logically.
After having determined the independent sets Dj of initial runs, each of the p parallel
merge processes Pj merges the partition Dj assigned to it. The result of each merge
process Pj is the sorted file OJ (cf. again figure 6).

www.manaraa.com

253

Il!lult file

SETPAKT m~/hood K£YPART me/hod

Fig. 6. Horizontally Parallelized Merge Phase

The final integration phase of the horizontally parallelized merge phase depends highly
on the choice of the splitting method. If the p data partitions Db' are computed by the
SETPART method, the integration of the p intenuediate results j consists in merging
them (cf. figure 6, left part). Although this merging can be temporally overlapped with
the construction of the intermediate results OJ' it has nevertheless an unwanted effect
of sequentialization. One single process has to merge all the files OJ' Because the pro
cessing time of merging depends linearly on the number of tuples to be merged, the
total processing time of the parallelized merge phase is the same as in the sequential
case. The result is, that no speedup at all is obtained. Therefore, the SETPART method
should not be applied, although it is simple and straightforward.
If the p data partitions Dj are computed by the KEYPART method, the integration of
the p intermediate results OJ consists in concatenating them (cf. figure 6, right part).
This works, because equations (2) and (3) guarantee that the result of the concatena
tion is sorted. The concatenation can be done logically due to the access and location
transparency of the secondary storage. There is no need at all to move the files O.
physically. Thus the processing time of the integration phase can be neglected. This i~
the reason why our new parallel external sorting algorithm uses a KEYPART method in
order to split the m initial runs 1Ri into the p data partitions Dj"

Before presenting the new splitting algorithm, which implements a KEYPART method,
we will take a closer look at the run time of the horizontally parallelized merge phase.
This is an interim calculation, which excludes the run time of the new splitting algo
rithm. Under the condition that the p data partitions Dj are equally sized (i.e. contain
the same number of tuples), the speedup is linear like the speedup of the presort phase
of the external sorting algorithm. This statement can easily be deduced from the obser
vations made in section 3.1. However one crucial preconditlon of the linear speedup
property is that the data partitions are equally sized and can be computed efficiently.
This exactly is guaranteed by our data partitioning method even in the presence of
arbitrary data skew.

www.manaraa.com

254

4 Data Partitioning
Data partitioning by means of splitting keys is one precondition that a horizontally par
allelized external sorting algorithm will work in a reasonable manner. Therefore this
section explores the possibilities of data partitioning using splitting keys. The discus
sion of data partitioning of this section is not done without reference to the parallel
external sorting algorithm. Before describing and analyzing the new partitioning algo
rithm, first general requirements are postulated and related issues are discussed.

4.1 Requirements and Existing Approaches
A data partitioning algorithm should be efficient and robust against data skew in order
to be useful for a KEYPART method. A trade-off exists between these two require
ments. On the one hand, one can use a simple sampling algorithm to deduce the split
ting keys. This sampling method is easy to implement and has good performance. But
the quality of the splitting keys tends to become unacceptable in presence of data skew.
The splitting keys may yield data partitions which differ a lot in their sizes. Thus one
principle precondition is not fulfilled. Explorations by Quinn [29] confirm this state
ment.

On the other hand, one can be robust against data skew by paying an enormous compu
tational overhead. An exact partitioning algorithm (like the percentile finding algo
rithm [21]) is based upon searching algorithms by bisection. The parallel external
sorting algorithm proposed in [34] runs the percentile finding algorithm to compute
independent data partitions needed for the parallel merge phase. But the I/O complex
ity, which depends linearly on the number of initial runs, and the random accesses to
secondary storage show that the percentile finding algorithm is unsuited to implement
a KEYPART method efficiently [27].

These observations are noticed by DeWitt et al. in [16], too. A compromise solution
must be found in order to keep the trade-off between efficiency and robustness as low
as possible. It is clear that the sizes of the data partitions do not need to be totally
equal. A certain degree of imbalance can be tolerated. Therefore an exact splitting
algorithm (like the percentile finding algorithm [21]) is superfluous. The compromise
solution consists in an intelligent sampling method. The probabilistic splitting algo
rithm used in [16] samples the input file to be sorted. The maximum imbalance
between the single data partitions can be estimated by means of probability theory.
However, the drawback of the probabilistic splitting algorithm is that it never can guar
antee the maximum imbalance, because a factor of uncertainty will always remain. To
overcome this disadvantage, a new adaptive partitioning algorithm by sampling is
developed in the next section.

4.2 Adaptive Partitioning by Sampling
The new adaptive partitioning algorithm of this section pays attention to the data distri
bution of the input file by sampling it during the presort phase. The distance between
the samples determines the accuracy of the splitting keys (i.e. the maximum imbalance
of the data partitions due to the splitting keys can be predicted). The possibility to vary
the distance between the samples derived from the input file makes the algorithm adap-

www.manaraa.com

255

tive. Thus, every given limit of maximum imbalance can be reached. The following
parallel merge phase does not suffer from processing skew in presence of data skew.
The main difference to the probabilistic splitting algorithm [16] is, that the adaptive
partitioning algorithm can predict the quality of the splitting keys exactly instead of
estimating it. Nevertheless the adaptive partitioning algorithm remains a sampling
method and avoids the performance drawback of the percentile finding algorithm [21].
Furthermore, the adaptive partitioning algorithm exploits the access and location trans
parency of secondary storage and therefore avoids interprocessor conununication dur
ing the redistribution of input tuples unlike the probabilistic splitting algorithm [16].

4.2.1 Description. The essence of the adaptive partitioning algorithm can be
described in a few words: Each nth tuple of each initial run forms a sample. They
mirror the data distribution of the input file. After having sorted these samples, the
adaptive partitioning algorithm computes the splitting keys. They represent the data
distribution as well. Therefore imbalance between the sizes of the data partitions
determined by these splitting keys is limited.
In order to give a formal description of the adaptive partitioning algorithm, we need
the following definitions:

De! 1. The step distance n is a positi ve number. It is a parameter of the adaptive parti
tioning algorithm and determines its accuracy.
De! 2. A sample area is a connected region within a file of tuples. Its size (in number
of tuples) is equal to the step distance n. A sample area is a logical partition which is
independent of the physical blocks of an I/O-device.

The adaptive partitioning algorithm consists of 6 basic steps described in the sequel.
Assume, that the m initial runs IRi (1 ~ i ~ m) are given. The adaptive partitioning
algorithm now computes p data partitions Dj (1 ~j ~ p) implementing a KEYPART
method (cf. section 3.4.2).
(i) Each initial run IRi (1 ~ i ~ m) is divided into Ii sample areas R i, / (1 ~ 1 ~ I)

(i.e. I R i = R i, l' . . R i, /.). The following equations hold:
'v(l~i~m):li = ilIRil/nl (4)

1;f(l~i~m)I;f(l~I~li-l):IRd = n (5)

I;f (l ~ i ~ m) : I Ri,lil = IIRil- n' (Ii - 1) (6)

Equation (4) determines the number of sample areas each initial run is divided into.
Equation (5) says that all sample areas except the last one of each initial run consist
of as many tuples as prescribed by the step distance n. The last sample area of each
initial run possibly contains fewer tuples as indicated by equation (6).

(ii) Each sample area RI· / (1 ~ i ~ m, 1 ~ I ~ l.) obtains an area key A. /. The area
) I l)

key Ai,l is the value of the sorting attribute of the first tuple of Ri, /. Now define
C(IR) to be the sequence of area keys of initial run IR i .

'v' (1 ~ i ~ m) : C(JR) = (Ai, l' ... , Aq) (7)

Each C(IR i) is sorted, because the initial runs are sorted. Furthermore, each
C URi) mirrors the data distribution of IR i. This observation is important,
because it makes the computation of the maximum load imbalance during the

www.manaraa.com

256

merge phase possible. The situation after the first two basic steps of the adaptive
partitioning algorithm is shown in figure 7. Initial run 1Ri and C (lR) are shown.

JR.: Ri,l Ri,2 D Ri,I;_l I R", I I

+ + + +
C(IRi): Ai,l A i,2 Ai,I;_l Ai, I;

Fig. 7. Adaptive Partitioning Algorithm after the 2nd Step

(iii) The m sorted sequences of area keys C(IRi) are merged into the sorted sequence
C = (C l' ... , C L) . It is L = r.~= l[i' The merging can be realized by an usual
m-way merging algorithm.

(iv) Now the sorted sequence C of area keys is divided into p equally sized partitions,
thus yielding (p - 1) splitting keys kj (1 ~ j ~ p - 1) . The elements kj are the
splitting keys of the KEYPART method (cf. section 3.4.2), which divide the m ini
tial runs 1Ri into the p independent data partitions Dj . The value of kj is defined
as follows:

V(1~j~p-l):kj = Cj'fLlpl (8)

The values ko and kp can be defined arbitrarily, if they fulfill the following restric
non:

ko<min {A;, 111 ~i~m} t\kp~max {Ai,lill ~i~m} (9)

(v) The splitting ~eys ') are used to put the sample areas Ri , I into the p groups Gj .

The group Gj IS defined as:

V(1 ~j~p) :Gj = {Rd (1 ~i~m) t\ (1 ~l~li) t\ (kj _ 1 <Ai,l~kj)} (10)

Equation (10) says, that a group Gj contains exactly these sample areas Ri, I'
whose area key lies in the interval bordered by the splitting keys kj _ 1 and kj . Each
group execpt Gl contains I L/pl sample areas. The last group contains
L - ((p - 1) . I / P l) sample areas.
Figure 8 shows the situation after the fifth step of the adaptive partitioning algo
rithm. The groups Gj approximate the searched data partitions Dr The groups G.
are "nearly" disjunct. Only the borders of the groups G. overlap. The last step h~
to compute the exact splitting positions within the initial runs.

,v

c
Fig. 8. Adaptive Partitioning Algorithm after the 5th Step

www.manaraa.com

257

(vi) In order to compute the disjunct data partitions Dj from the groups Gj
(1 ~j ~ p) , the following observations are exploited:
· All tuples of the sample areaR i I have a sorting attribute, the value of which is
not less than the area key Ai, [belonging to R U This property can be deduced
from the fact that initial runs are sorted.
· All tuples of the sample areaR i, [have a sorting attribute, the value of which is
not greater than the area key Ai [+ 1 belonging to the sample area next to Ri [.
Again, this is true, because initial'runs are sorted. '
· The area keys Ai, [of the sample areas Ri, [E Gj lie between the splitting keys
determining the group Gj . More formally:

V(l ~ i ~m, 1 ~ I ~ Ii' 1 ~j~p) : (R i, [E Gj ~ kj _. 1 ~Ai, [~kj) (11)

Equation (11) lilnits the searching space for the exact splitting positions within the
initial runs to compute the p searched data partitions Dj . The exact splitting posi
tions are contained in the sampling areas bordering the groups Gj (cf. figure 9).

~ple o.reas ofinitio.l run !Rj belonging to group Gj

'----------~------
part of data partition OJ belonging to inilial run I Rj

Fig. 9. Adaptive Partitioning Algorithm after the last Step

4.2.2 The Impact of Data Skew. Data skew lnight produce data partitions which have
unequal size. We define the imbalance between two data partitions as the difference of
the number of tuples in two data partitions:

Imbal(Di,D) = IIDil-IDjll (12)

MaxImbal = max {Imba/(Di' D)11 ~ i,j ~p} (13)

A direct consequence of the description how to deduce the data partitions Dj from the
groups Gj within step (vi) is the central proposition of this paper. It determines the
maximum imbalance between the data partitions Dj .

Prop. 1. Assume that the p data partitions Dj are computed by our new adaptive parti
tioning algorithm from m initial runs using step distance n. Then the maximum imbal
ance M axImbal between two data partitions is lilnited by the following formula:

Maxlmbal < 2· m' n (14)

It is an important observation that the maximum imbalance does neither depend on the
degree of parallelism nor on the data skew. Using equation (1), one can deduce:

MaxImbal<2· (Nih) . n (15)
Equation (15) is equivalent to:

MaxlmballN < 2· nih (16)
The ratio MaxImballN is called normalized maximum imbalance. It expresses the

www.manaraa.com

258

maximum imbalance which might be obtained by the adaptive partitioning algorithm,
related to the total size of the input file. This is necessary to give a worst case estima
tion of the parallel merge phase. In contrast to the probabilistic splitting algorithm
[16], we are able to guarantee an upper limit of the run time needed to sort a given
input file in parallel. Using the expected length of 2 . h for initial runs [23], the above
worst case imbalance can be guaranteed, but the expected normalized maximum
imbalance will be less than nih.
The following example shows that just a small fraction of the input file must be sam
pled to guarantee a low degree of normalized maximum imbalance. We assume that
the input file contains 2· 106 tuples (each having a size of 50 bytes yields a total size
of the input file of 100 MByte). Furthermore, we assume that the main memory is lim
ited to 2 MByte thus having a heap size of 4 . 104 tuples during the presort phase.
Then table 1 says that only 0.25% of the input data must be sampled in order to limit
the normalized maximum imbalance to 2 %.

Table 1. The Accuracy of the Adaptive Partitioning Algorithm

5 Implementation and Performance
In this section we describe the implementation of the horizontally parallelized external
sorting algorithm as developed in section 3.4. The new adaptive partitioning algorithm
of section 4.2 is used to implement the KEYPART method. This section concludes with
performance results done by measurements and theoretical analysis.

5.1 Hardware and Software Environment
The new parallel external sorting algorithm has been implemented on top of an iPSC/2
(intel Super Personal Computer) [20]. The iPSC!2 is a distributed memory multipro
cessor. Its nodes are connected in a hypercube manner. The CFS (Concurrent File Sys
tem) provides access and location transparency of the secondary storage. Thus, the
iPSC/2 in combination with the CFS belongs to the class of shared disk multiproces
sors (cf. section 3.2). The configuration we used for the implementation and the perfor
mance measurements have had 16 processing nodes and two I/O processors equipped
with 2 disks each.
The operating system used for the implementation is MMK [8]. It offers the program
mer three different types of objects in order to design and develop his program. All
objects have global names, which are unique within the system. A parallel MMK-pro
gram consists of a set of these objects which are mapped onto real processors of the
iPSC/2 during run time.
TASK. A task performs a sequential program written in any usual sequential program
ming language like C or FORTRAN. The tasks are the active components of a MMK
program. They perform the parallel algorithm in its literal sense.
MAILBOX. Mailboxes are used for the intertask communication. A task can send a
message to any mailbox whose name is known to it. The messages are stored in the

www.manaraa.com

259

mailbox in a FIFO manner. Also, a task can receive a message from any known mail
box. The storing capacity of a mailbox is a start-up parameter which can be varied so
that both synchronous and asynchronous intertask communication is possible.

SEMAPHORE. Semaphores deal with task synchronization.

5.2 Implementation
The set of tasks and mailboxes (semaphores are not used) of the parallel MMK-pro
gram implementing the new parallel sorting algorithm is shown in figure 10. The data
flow in this figure is bottom up following the arcs.

@ MMK mailbox

r:::::I CPS file

o MMK task (1 incarnation)

~ MMK task (p incarnations)

---. data flow

Fig. 10. The Parallel Sorting Algorithm on Top of MMK

The function of the task create-initrun is to generate initial runs from an unsorted input
file which resides on the CFS (i.e. performing the presort phase). Furthermore it has to
perform the basic steps (i) and (ii) of the adaptive partitioning algorithm. Therefore, its
result is a set of initial runs IR i and a set of area key sequences C (IR) both stored in
files of the CFS. After the completion of its job, the task create-initrun sends a mes
sage to the communication mailbox mbl. This message contains the filenames of the
generated files. To process the task create-initrun in parallel, the paradigm of horizon
tal parallelism is applied and p incarnations of the task create-initrun are performed on
p different nodes of the iPSC/2. The input file must be split logically as explained in
section 3.4.1.

The function of the task coordinate is to perform the basic steps (iii) through (v) of the
adaptive partitioning algorithm. It reads the files C (lR) . Their filenames are received
from the mailbox mbl. The result of the task coordinate are the splitting keys k. and
the borders of the groups Gj . The result is sent to themailboxmb2.This task canriot be
performed in parallel, since it is the sequential part of the adaptive partitioning algo
rithm. Therefore, just one incarnation of it exists.

The function of the task merge-initrun is to compute the exact splitting positions
within the initial runs 1Ri according to the splitting keys kj (i.e. performing the basic

www.manaraa.com

260

step (vi) of the adaptive partitioning algorithm) and to merge the initial runs (i.e. per
forming the merge phase). The task merge-initrun gets its start-up parameters (i.e. file
names, splitting keys, etc.) by reading the mailbox mb2. To perform the task
merge-initrun in parallel, p incarnations of the task merge-initrun are processed on p
different nodes of the iPSC/2 (i.e. horizontal parallelism). Attention must be paid that
the number of splitting keys and the degree of parallelism during the merge phase are
equal.

5.3 Performance
In order to demonstrate performance results, the following testbed has been chosen:
The unsorted input file has a size of 100 MByte. Each tuple within the input file has a
size of 50 bytes. The heap of the tasks create-initrun can hold 104 tuples each to gen
erate the initial runs. The step distance n during the adaptive partitioning algorithm is
set to 400. Comparing this parameter setting with table 1, a normalized maximum load
imbalance of 2% can be guaranteed.
Figure 11 shows the run time during the presort and merge phases. It demonstrates
linear speedup until the I/O-subsystem (i.e. the CFS of the iPSC/2) becomes the bottle
neck. Referring to the discussion of section 3.3, our new parallel sorting algorithm is
effectively scalable. Because the access pattern to the secondary storage is different
during the presort and merge phases, the two phases have different values of balance
parallelism. During the presort phase the access to the secondary storage is sequential,
whereas it is random during the merge phase. The degree of CPU parallelism which
can be exploited effectively seems to be very low. The reason is the performance
imbalance between the CPU and the I/O-subsystem of the iPSC/2 which we used for
our measurements. During the create-initrun phase 100 MByte are read from an writ
ten to the disk, i.e. a total of 200 MByte. This takes a total time of about 250 sec at the
point of balance parallelism. Thus the performance of the I/O-subsystem of the iPSC/2
is about 800 KByte/sec. During the merge-initrun phase disk performance is about 500
KByte/sec.

Runtime (sec)

1250

1000

750

500

250

Runtime (sec)

750

500

250

~IU2~3~4~5~6U7~8~CPU

crellle ~ illilrUn muge-inilrun

Fig. 11. Run Time of the Parallel Sorting Algorithm

""",t phose

b.<lC <Iq> (VI)

buic SlCp. (III). (IV) .nd(v)
bl5lt >1'1" (,).1Id (II)

Figure 11 expresses the additional run time due to the adaptive partitioning algorithm,
too. It can be seen that the additional run time is very low W.r.t. the run time for sorting
in its literal sense. In order to confirm this observation we give a theoretical analysis of
the complexity of the adaptive partitioning algorithm.
The basic steps (i) and (ii) are performed during the presort phase by the task

www.manaraa.com

261

create-initrun. The computation of the files IRi and C URi) is done simultaneously.
Furthennore, the paradigm of horizontal parallelization is applicable. The additional
CPU costs to compute the area keys Ai, j can be neglected, because the sorting
attributes of the sampled tuples have to be extracted anyway during the presort phase.
The I/O complexity of the basic steps (i) and (ii) are 0 C CNln) . K) where K is the
ration KeySizelTupleSize.

The basic steps (iii), (iv) and (v) are perfonned by the task coordinate. This is the only
sequential part of the adaptive partitioning algorithm. Therefore the additional costs
must be explored very carefully. The additionalI/O costs have again a complexity of
o «Nln) . K) like during the steps (i) and Cii). The additional CPU costs in order to
merge the m sequences CUR) into the sequence C = (C l' ... , C L) have a com
plexity of 0 C CNln) . log Cm» . This may look expensive, but the measurements
have shown that the sequential part of the adaptive partitioning algorithm can be per
fonned quickly compared to the total run time needed to sort large volumes of data

The final basic step (vi) of the adaptive partitioning algorithm can be perfonned in par
allel again. Each process Pj which has to merge the data partition Dj assigned to it
gets a prologue. During this prologue the exact splitting positions withiil the groups Gj
are computed. The additional CPU and I/O both have a complexity of 0 (n) . The
costs are due to the additional sample area, which must be loaded from secondary stor
age. Within this additional sample area the exact splitting position must be found
according to the splitting keys. Table 2 summarizes the theoretical results about the
additional costs due to the adaptive partitioning algorithm.

basic step add. I/O costs add. CPU costs parallel processing

(i), (ii) O((N In) 'K) negligeable yes

(iii), (iv), (v) O((N I n)'K) O((N In) 'log(m)) no

(vi) O(n) O(n) yes
.. . . Table 2. AddltlOnal Costs of the Adaptive Partitionmg Algonthm

6 Summary and Future Work
We have proposed a new parallel sorting algorithm for large data volumes. It applies
the paradigm of horizontal parallelism. The two phases are treated separately. The pre
sort phase turns out to have splitting and integration phases without any significant
overhead. Furthennore, load imbalance cannot occur during the parallel processing
phases. The subsequent merge phase gets a prologue in the course of which a KEY
PART method computes splitting keys. They are used to partition the initial runs hori
zontally. Parallel merging becomes possible. Both phases show linear speedup
characteristics until the I/O-subsystem becomes the bottleneck. By means of CPU par
allelism, we are able to tune the multicomputer.

Our new adaptive partitioning algorithm implementing a KEYPART method fulfills the
necessary requirement of efficiency (low overhead) and robustness against data skew
(load balance). Although it perfonns sampling in order to guarantee efficiency, it can
give a worst case estimation of the maximum imbalance which may occur. The basic
idea, which distinguishes our algorithm from existing sampling algorithms, is the way
how the samples are taken. Instead of sampling the unsorted input data stream, we

www.manaraa.com

262

sample the initial runs. Thus, we have samples mirroring the data distribution. There
fore the splitting keys extracted from the samples are not sensitive to data skew. The
accuracy of the splitting keys depends on the step distance (input parameter), which
adapts the worst imbalance to given requirements. An other important requirement is
that the accuracy of our adaptive partitioning algorithm does not depend on the degree
of parallelism.
In the future, the following topics should be analyzed: The description of our adaptive
partitioning algorithm provides various possibilities for tuning. Our current implemen
tation sends the area keys Ai,j via the CFS to the task coordinate. But the amount of
data due to the area keys2) does not justify to store the area keys on secondary storage.
Efficient main memory data structures and the intertask communication facility of
MMK can be used to accelerate the algorithm.
Up to now, the performance measurements are done on a system which hardly pro
vides parallelism within the I/O-subsystem. A highly parallel I/O-subsystem with fast
access times and high transfer rates should be used to prove the ability of our new par
allel sorting algorithm under this environment, too.
The most important challenge for the future is the integration of our new parallel sort
ing algorithm into the parallel query evaluation plans of our relational database system
TransBase [33]. Its sequential query evaluation plans treat sorting as a monolithic
operator. It will be necessary to divide this monolith into a presort operator and a
merge operator. Thus a different degree of parallelism can be assigned to the operators
ensuring the optimal degree of parallelism. Furthermore, this integration gives the pro
cessors more load due to other operators (e.g. selection) of the parallel query evalua
tion plans. This increments the potential of more parallelism compared to the case that
only sorting has to be performed by the processors.

Appendix (List of used parameters)
N: number of tuples to be sorted
p: degree of parallelism (= number of processors)
m: number of initial runs
h: heap size used during presort phase
n: step distance of our partitioning algorithm
K: ratio: KeySizelTup/eSize

References
1. A. Aho, J. Hopcroft, J. Ullman; Data Structures and Algorithms; Addison Wesley Publ.

Compo Inc., 1983
2. P. Apers, M. Kersten, H. Oerlemans; PRiSMA Database Machine: A Distributed Main

Memory Approach; In: Proceedings of the 1 st International Conference on Extending
Database Technology, Venice, Mar 88

3. K. Batcher; Sorting Networks and their Applications; In: Proceedings of the 1968 Spring
Joint Computer Conference, Vol. 32, 1968, pp. 307 - 314

4. B. Baugst0, J. Greipsland; Parallel Sorting Methods for Large Data Volumes on a
Hypercube Database Computer, In: Proceedings of the 6th International Workshop on

2) If we assume that a key of a tuple has a length of 10 bytes, then the set of area keys extracted
from the initial runs consumes 50 KB yte of memory in the example chosen in section 5.3.

www.manaraa.com

263

Database Machines, Deauxville, Iun 89, LNCS No. 368, pp. 128 - 141
5. R. Bayer, T. Harder; Preplaning of Disk Merges; Computing, Vol. 21, No.1, pp. 1 - 16,

1978
6. R. Bayer, T. Harder; A Performance Model for Preplaned Disk Sorting; Computing,

Vol. 21, No.1, pp. 17 - 36,1978
7. M. Beck, D. Bitton, K. Wilkinson; Sorting Large Files on a Backend Multiprocessor,

IEEE Transactions on Computers, Vol. 37, No.7, lui 88
8. T. Bemmerl, T. Ludwig; MMK - A Distributed Operation System Kernel with Integrated

LoadbaZancing; In: Proceedings of the CONPAR 90 - VAPP IV, ZUrich, Sept 90
9. T. Bemmerl, A. Bode, P. Braun, O. Hansen, T. Treml, R. WismUller; The Design and

Implementation of TOPSYS; Technical report, Technische Universitat MUnchen,
No. 342/16/91 A, luI 91

10. G.Bilardi, A. Nicolau; Adaptive Bitonic Sorting: An Optimal Parallel Algorithm for
Shared-Memory Machines; SIAM I. Comput., Vol. 18, No.2, Apr 89, pp. 216 - 228

11. H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M.
Smith, P. Valduriez; Prototyping Bubba, A Highly Parallel Database System; IEEE
Transactions an Knowledge and Data Engineering, Vol. 2, No.1, Mar 90

12. U. Borghoff; Catalogue of Distributed File/Operating Systems; Springer Verlag, Berlin
Heidelberg, 1992

13. T. Chen, V. Lum, C. Tung; The Rebound Sorter: An Efficient Sort Engine for Large Files;
In: Proceedings of the 4th International Conference on Very Large Data Bases, West
Berlin, pp. 312 - 318

14. R. Cole; Parallel Merge Sort, SIAM J. Comput., Vol. 17, No.4, Aug 88, pp. 770 - 785
15. D. DeWitt, S. Ghandeharizadeh, D. Scheider, A. Bricker, H. Hsiao, R. R. Rasmussen; The

Gamma Database Machine Project, IEEE Transactions on Knowledge and Data
Engineering, Vol. 2, No.1, Mar 90

16. D. DeWitt, J. Naughton, D. Schneider; Parallel Sorting on a Shared Nothing Architecture
using Probabilistic Splitting; In: Proceedings of the 1st International Conference on
Parallel and Distributed Information Systems, Miami Beach, Florida, Dec 91

17. Y. Dohi, A. Suzuki, N. Matsui; Hardware Sorter and its Application to Database Machine;
In: Proceedings of the 9th Conference on Computer Architecture, Austin, Apr 82,
pp. 218 - 225

18. B. Edem, R. Helliwell, T. Johnston, E. Lary, R. Lary; Sort Accelerator, Technical Report,
Database Research Group, DEC, May 90, Do. No.: DBS-TR-3 DEC-TR-691

19. G. Gibson; Redundant Disk Arrays: Reliable, Parallel Secondary Storage; Technical
Report, No. UCB/CSB 91/613, Computer Science Decision, University of California,
Berkeley, Dec 90

20. Intel Scientific Computers; Concurrent Supercomputing The Second Generation, A
technical Summary of the iPSCI2 Concurrent Supercomputer; Reprinted from the Proc. of
the ACM Third Hypercube Conference

21. B. Iyer, G. Ricard, P. Varman; Percentile Finding Algorithm for Multipe Sorted Runs; In:
Proceedings of the 15ili International Conference on Very Large Databases, Amsterdam,
1989, pp. 135 - 144

22. B. Kandler, M. Pawlowski; SAM: A Sorting Toolbox - User's Guide; Technical Report,
Technische Universitat MUnchen, No. 342/2/91 B, Jun 91 (in german)

23. D. Knuth; Sorting and Searching. The Art of Computer Programming; Addison Wesley
Publ. Compo Inc., 1973, Vol. 3

24. K. Lehnert; Regelbasierte Beschreibung von Optimierungsveifahren ffir relationale
Datenbankabfragesprachen; Ph.D. Thesis, Technische Universitat MUnchen, Dec 88 (in
german)

25. E. Loibl, H. Obermaier, M. Pawlowski; Towards Parallelism in a Relational Database
System; Technical Report, Technische Universitat MUnchen, No. 342/10/91 A, Jun 91

26. R. Lorie, H. Young; A Low Communication Sort Algorithm For a Parallel Database
Machine; In: Proceedings of the 15ili International Conference on Very Large Data Bases,
Amsterdam, 1989, pp. 125 - 134

www.manaraa.com

264

27. D. Menzel; Paralleles Externes Sortieren auf Multiprozessoranlagen; Master Thesis,
Technische Univer~tiit Mtinchen, Nov 1991 (in german)

28. D. Patterson, G. Gibson, R. Katz; A Case for Redundant Arrays of Inexpensive Disks
(RAID); In. Proceedings of the SIGMOD International Conference on Managemant of
Data, Editors: H. Boral, P. Larson, ACM Press, Chicago, Jun 88, pp. 109 - 116

29. M. Quinn; Parallel Sorting Algorithms for Tightly Coupled Multiprocessors; Parallel
Computing, Vol. 6, 1988, pp. 349 - 357

30. A. Reuter; Database Sharing; Informatik Spektrum, Vol. 8, No.4, Apr 85, pp. 225 - 226
31. M. Stonebraker; The Case for Shared Nothing; Database Engineering, Vol. 9, No.1, 1986
32. Teradata Corp.; DBC/JOl2 Database Computer System Manual; Doc. No. ClO-000I-02,

Nov 1985
33. TransAction Software GmbH; TransBase Relational Database System; System Guide,

Mtinchen, 1988
34. P. Varman, B. Iyer, S. Scheufler; A Multiprocessor Algorithm for Merging Multiple Sorted

Lists; In: Proceedings of the International Conference on Parallel Processing, 1990,
pp. III-22 - ill-26

www.manaraa.com

Quantum Mechanical Programs for Distributed
Systems: Strategies and Results

H. FrUcht! and P.Otto

Chair for Theoretical Chemistry
Friedrich-Alexander-University Erlangen-NUrnberg

Egerlandstr. 3
D-8520 Erlangen, Germany

Abstract. The knowledge about structure and functionality of chemical sys
tems not only allows the verification of physical and chemical mechanisms
but also gives the opportunity of proposing new materials with selected new
properties. For investigations on molecular level quantum mechanical meth
ods have to be used. Reliable calculations on molecules and macromolecules
require the use of high performance computers. The development of mas
sively parallel computer systems opens the possibility of doing calculations
on larger and more realistic chemical structures.

1 Introduction

Analysis, modelling, prediction and optimization of molecular and macromolecular
structures with computers is one of the "challenge classes" of scientific high perfor
mance computing.

The basis for understanding biological processes is the investigation of the mech
anisms of biomolecules like DNA and proteins. Organic polymers are of increasing
importance as materials for new technologies. Due to the variety of their physical
and chemical properties there is still no end in sight for their application fields.

To make such investigations possible new efforts are necessary both at scaling,
i.e. adjusting the problems to existing machines and at the development of new high
performance computers for large scale calculations.

The application of quantum mechanical methods for investigations on molecular
level can in principle serve two purposes:

• They can help to clear up mechanisms of physical and chemical phenomena or
to check the correctness of theoretical interpretations of experimental results.
Interesting and important effects like high-temperature superconductivity of ce
ramic materials or the fundamental steps of chemical carcinogenesis probably
can only be explained by means of theoretical investigations on microscopic
level.

• In the area of material sciences the knowledge of basic physical effects can be
exploited to propose new substances with special selected properties using the
theoretical methods based on quantum mechanics. Expensive and time-consum
ing experimental investigations can be avoided or at least reduced. Especially
in the field of molecular biology the knowledge about the relation between bio
logical effects and chemical structure in combination with quantum mechanical

www.manaraa.com

266

calculations can be used to design molecules with specific properties. This can
be of great importance for the development of new enzymes and other pharma
ceutical substances.

To obtain reliable results, these and many other problems have to be treated with
ab initio methods. To carry out such calculations with sufficient accuracy on com
plex chemical systems large resources of computation time, memory and disk space
are required, so that high performance computer systems have to be used.

In spite of the manifold different numerical algorithms involved in quantum me
chanical calculations of the electronic structures of molecules and polymers a high
degree of parallelism can be observed. This allows the realization of programs ap
plicable to complex chemical systems on massively parallel computers.

A major part of our investigations deals with the calculation of band structures
of organic polymers and biochemical macromolecules and the determination of their
physical and chemical properties. Usually the computation consists of three time
consuming steps:

• The ab initio Hartree-Fock method [1-3] gives the energy band structure and
electronic wave function of the quasi one-dimensional periodic system.

• Wave functions and energies are corrected with respect to electron correlation
effects using perturbation theoretical methods [4].

• Finally the properties under consideration (mechanical, nonlinear optical, trans
port properties) are calculated from the correlated wave function [5].

As on one hand the different parts of the computation imply different require
ments concerning computer architecture and on the other hand an exact knowledge
of hardware and operating system is necessary to choose the best algorithm for a
given problem, a close cooperation of development and application as it is realized
in the MEMSY project is advantageous for both sides.

2 The Hartree-Fock Crystal Orbital (HF-CO) Method

Aim of the Hartree-Fock SCF (self-consistent field) approximation is the determi
nation of the energy band structure imd electronic wave function of periodic poly
mers, from which other properties (conducting properties, (hyper-)polarizabilities
etc.) can be calculated. The SCF procedure consists in the iterative solution of the
generalized hermitian eigenvalue problem

F(k)cn(kj) = En(kj)S(kj)cn(k)

n = 1, ... , NBF, i = 1, ... , NKP
basis functions points in reciprocal space

where the Fock matrix F is determined as a function of the eigenvectors C from the
previous iteration. This is repeated until convergency is achieved.

www.manaraa.com

267

The Fock- and overlap-matrices, F(k) and S(k), are obtained as Fourier trans
forms of the corresponding matrices in direct space.

NE/G
'"' eiR ,k • .oj M(k) = J... M- M = F,S

Je-NEIG

The matrices FOI describe the interaction of the electrons in the reference cell 0
and those in cell J and SO] occurs because of the non-orthogonality of the basis func
tions. NEIG is the number of cells interacting with the reference cell.

The first time-consuming step consists in the calculation of the so-called two
electron integrals, which are needed for the calculation of the Fock matrix. They de
scribe the Coulomb and exchange interaction between two electrons and are of the
general form:

r, s, u, v = 1, ... ,NBF
J, H, L = -NEIG, ... ,NEIG

The basis functions (atomic orbitals) are written as linear combinations of ni so
called primitive Gaussian functions (nj "" 2 - 10). The superscripts denote one of
Ngroup possible combinations of cells where the basis functions are localized. The
value of Ngroup increases rapidly with increasing NEIG (NEIG = 1,2,3; Ngroup=5,
15, 35). The total number of integrals to be calculated then yields

Ngroup*NBF4*n4

(without consideration of symmetries according to basis functions and negligible in
tegrals smaller than an integral threshold).

In order to minimize the number of redundant arithmetic operations several quan
tities are calculated in advance and stored in tables for later use during the actual
integral calculation. The different loops in the program were vectorized as far as this
was possible [6,7]. The total number of arithmetic operations needed for the final
calculation of an integral over primitive functions are:

- 22 additions
- 20 multiplications
- 2 divisions
- 2 square roots

For storing one integral two memory words of 8 bytes are needed (one for the
value and one for the four indices).

www.manaraa.com

268

It is quite obvious that the calculation of the integrals has a high degree of par
allelism, because every integral can be calculated independently of the others. The
requirements for the communication system are low, the basic difficulty arises from
the need for a balanced distribution of workload, because the number of integrals to
be calculated in one group cannot be determined exactly in advance (neglect of in
tegrals smaller than a threshold, symmetries according to basis functions).

3 Parallelization Strategy for the Integral Program

3.1 Program Structure

Fig. 3.1 shows the loop structure of the two-electron integral program.

igroup = 1 .. Ngroup

i= 1 .. NBF

j= 1 .. NBF

k= I .. NBF

1= I .. NBF

ic= I .. ~

jc= 1 .. ~

kc=l .. ~

lc=l .. nl

integral
over

primitive
functions

Fig. 3.1 Loop structure of the two-electron integral program

In earlier attempts the distribution of tasks to the computing nodes was done in
the loop over igroup [8], but a good load balancing could only be achieved for high
values of Ngroup, although the work was dynamically distributed. In this investiga
tion distribution over the loops i and j was used (NBF*NBF pairs) in order to obtain
a sufficiently fine granularity. As the tasks are distributed using the farming concept
(see Fig. 3.2) different task sizes have only small influence on the workload of the
processors. A "master" processor calculates data needed for all integrals and divides
the number of ij-pairs for every group in as many parts as there are "slave" proces-

www.manaraa.com

269

master slave

I input I
precalcuiations

I

-~
send data ,:::
"for all" .. receive l

-< -
\

I
read data for

1 group

I
partition indices ask for new

L .. task
1

send data
and indices .1 receive

no all calculate
- groups integrals

ready
store

yes
~ terminate C

=:1 l

Fig. 3.2 Master-slave concept of the integral program

sors. Whenever a "slave" tells the "master" that he has nothing to do, the "master"
sends him a new task, consisting of information about the range of ij-pairs to be
computed and the precalculated data for the new group [9].

www.manaraa.com

270

3.2 Implementation and Results

Measurements of speed-up and efficiency as well as analysis of communication
overhead were done on two different parallel computers, both of them MIMD ma
chines with distributed memory:

SUPRENUM up to 256 nodes with vector units (up to 32 were
used). 8 Mbytes memory and a peak performance
of 20 MFlops per node.

Intel iPSC/860 32 nodes (hypercube architecture). 16 Mbytes
memory, peak performance 60 MFlops per node.

In Fig. 3.3a and 3.3b the results for a model system (NBF=14, Ngroup=5) are
shown in comparison. Although the actual calculation times are larger on the SU
PRENUM than on the Intel by a factor of about 3.5 we obtain nearly identical curves
for speed-up and efficiency. The maximum efficiency (in the case of the considered

20 .;
:: a)
E-

15 £

~
0. 10 t
~ E-
I !:"

-0 ,.;:

~ f,'
g. 0 F~!"~ ! , , , , 1 , , • ! ! , , ,! It, I I , ! , • ! I , ••

" " number of processors

1.0 r
E

G::f/~--
.~ .41'
.r!
~ .2
~

(!J o. t, , ! , ! 1 I , ! , • ! , , , ! ! , , , • , , ! I I • ! , I • ,

o 5 1:1 15 20 2' 3:)

number of processors

£
t

"I
0. 10 t
;:I ~
I -

-0 sf
~ ~,'
0. i' "

b)

til t., o -', , , , , .• I , , • ! , ! ! , , I , ! , ! ! , • t • ! t ! , •

a 5 :, 1 S 2D 25 " number of processors

I., f

g: I ;-------------
~·I ~ .' -""" . " " " . " " . " . " " " " "

" 2. 2. " number of processors

Fig. 3.3 Parallelization results on a) SUPRENUM and b) iPSC/860

polymer) is reached with ten processors. A further increase in the number of pro
cessors leads only to a slight decrease in efficiency under 0.8, i.e. 20% of the com
putation time is used for overhead arising from parallelization.

www.manaraa.com

271

10 12 1" 15 11

number of processors

"0
..

, I ' I ' , I I ! , I ' , 1 , 1 I 1 , I " " , 1 • , • I " I I :I

10 12 1" 15 11

number of processors

b)
151

g. " 1 "",./
1 s t,.",/·'··

CI) 0 ro: I , , , , • , I I ••• , •• ! , , • ! , • , , t , , , • , ! • , • I

number of processors

... f

s:l~
c I .~ ..
o
;j .2

~ 0,' I, I,' "1""""" I' J, I. I' "1 ",','
2 , to 12 H iii. sa

number of processors

Fig. 3.4 Parallelization results for larger systems: a) polyethylene with two
neighbors and b) polybutylene (double number of basis functions)

If the number of integral groups is increased further (Fig. 3.4a: Ngroup = 15) an
efficiency above 0.8 can also be obtained for a larger number of processors. The
same improvement can be observed, if the number of basis functions is increased,
as Fig. 3.4b (NBF = 28) shows. This means that for calculations on systems of sci
entific interest, which are much larger than our model polymers, a sufficient speed
up can be achieved even with a much larger number of processors.

~ --~~-. com:nunication
• eG ~

C ~ waiting
.~ f _._ .. I/O
.j..l ... ~

g E . ,/,/" /''_ '-,,'
.1:j E ,',..' _',_

.~ •
C2 1 ~-:f:;~~~~:;~=~j:'~ -'.-'

~ 0,1"" ',"1,' ",',',11' I! I! ," 1,.'1', '
D 2 .. IS to 12 11 16 Ie

number of processors

o •

c
0 0•

'';
.j..l

go<
/.I

Ij..j

b)
~~~~. 

.......... ~' 
"--- ... _- .. ",,, ...... _, 

" com:nunication , 
I 

I 
I , 

I 
I 

I 
I 

waiting 

I/O 
.02' ____ ... -

~ / .. ' ..... .. 
j o. ~~~'~'~~H"~-~-~"~'~'44'~'L-~'~-~'4-+'~-~'~-4J'-

o 2 " S • 10 1~ 14 15 l' 

number of processors 

Fig. 3.5 Analysis of parallelization overhead for a) polyethylene with 2 neighboring 
cells and b) polybutylene with one neighboring cell 



www.manaraa.com

272 

An analysis of parallelization overhead (see Fig. 3.5a, 3.Sb) shows, that in the 
case of many integral groups, i.e. a larger number of tasks to be distributed, com
munication dominates the overhead, whereas for a smaller number of groups and 
larger elementary cell waiting time is the major part, due to the coarser granularity 
of the distribution. 

4 Outline of the Parallelization of the SCF Program 

The generalized hermitian eigenvalue problem has to be solved iteratively, because 
the matrix elements are functions of the solution. In every iterative cycle NKP ma
trix diagonalizations have to be done. 

A detailed analysis of the sequential algorithm shows, that the problem can be 
divided into two parts, for which different parallelization strategies on distributed 
computing systems have to be chosen. The sequence of the individual steps and their 
distribution to the single processor nodes is outlined in Fig. 4.1. 

build up pOI 

add pOI 

calculate F(k) 

addF(k) 

calculate Q,R 

collect Q,R 

H'=RQ 

collect H' 

calculate P 

addP 

Fig. 4.1 Parallel structure of the SCF program 



www.manaraa.com

273 

• The integrals calculated in the first step, multiplied with elements of the charge
density matrix P obtained from the eigenvector coefficients, are used to build 
up the matrices pOI for all values of J. As each processor only accesses a part of 
the files where the integrals are stored (these are again distributed following the 
farming concept), in the memory of every processor there is only a partial sum 
of all matrix elements. These matrices are then sent to the "master" and added 
up there . 

• The NKP diagonalizations per iteration cycle are distributed to the individual 
processors as follows. First the Nslav "slave" processors are grouped in NKP 
clusters with Nslav/NKP nodes each. In every cluster one processor is charac
terized as "cluster master" for coordination tasks in addition to the work of ev
ery other slave. 

- Within each cluster the columns of the matrices FOI are distributed to the in
dividual processors, where partial sums of the Fourier transforms F(k j ) for 
the particular values of k are built up. These are summed uf. by the "cluster 
master" afterwards. The amount of data to be sent is NBF *(NEIG+l) real 
numbers. The "cluster master" then does a Lowdin orthogonalization to 
transform the general to a special eigenvalue problem. This step, as well as 
the following tridiagonalization using a Householder or Block-Householder 
algorithm, can at least partially be done in parallel by all processors of the 
cluster. 

- The diagonalization of the tridiagonal matrix is now done using the QR al
gorithm. Fig. 4.2 illustrates how this method is realized within one cluster 
[10]. Two steps are necessary for this. First the matrices Q and R have to be 
calculated (factorization H=QR), then they have to be multiplied in oppo
site order (H'=RQ). The new elements of all columns of Q can be calculated 
without knowing the neighboring rows, so they can be calculated in parallel 
without any communication if Q is distributed by rows. The same holds for 
the rows of R in case of distribution by columns. Also the multiplication can 
be done in parallel, because for the calculation of elements of H' only the 
involved rows of R and columns of Q are needed. To avoid load balancing 
problems arising from the special structure of the matrices involved (R is a 
right triangular matrix, Q is of Hessenberg type) the distribution to the sin
gle processors happens according to the "Team Mapping" method, which 
means a distribution of columns (or rows) in altematingly increasing and 
decreasing order. 

- Afterwards the new partial matrices are collected by the "cluster master" 
and distributed to the "slaves" for the next iteration. 



www.manaraa.com

274 

Q:~-~ 

R: 00-00 

Pig.4.2 Calculation ofQ (distributed by rows) and R (distributed 
by columns) and matrix multiplication on one processor 

- After the diagonalization is finished each "cluster master" calculates a part 
of the charge-density bond-order matrix P from the eigenvectors for his k
value. Then these matrices are sent to the global master, summed up there 
and sent back to the "slaves", because they are needed for building up the 
matrices F'lJ for the next iteration cycle. The calculation terminates when 
the "master" recognizes that the solutions have converged. 

In contrast to the calculation of the integrals in the SCF-calculation there is a 
much larger amount of communications and synchronizations. Many of the commu
nications are of the form "one-to-all" (broadcast) or "all-to-one". The implementa
tion of the single steps depends very much on computer architecture and communi
cation system. Especially the MEMSY configuration with local communication 
memory can be used very efficiently for such problems. Here the step of summing 
up matrices (which occurs several times in different parts of the calculation) would 
be done successively while the matrices are "migrating" through the processor ar
ray. 



www.manaraa.com

275 

References 

1. G. Del Re, J. Ladik and G. Biczo, Phys. Rev. 155, 997 (1967). 
2. J.-M. Andre, G., L. Gouverneur and G. Leroy, Int. J. Quant. Chem. 1,427,451 

(1967). 
3. J. Ladik in Quantum Theory of Polymers as Solids, Plenum Press, New York, 

London (1988). 
4. S. Suhai, Phys. Rev. B 27, 3506 (1983). 
5. J. Ladik, J. Mol. Struct. 206,39 (1991) 

P. Otto Phys. Rev. B 45, 10276 (1992). 
6. P. Otto and H. Reif, J. Compo Phys. Comm. (accepted). 
7. H. Friichtl and P. Otto, acm Trans. Math. Softw. (submitted). 
8. S. Kinderroann, E. Michel and P. Otto, J. Compo Chem. 13 414 (1992). 
9. P. Otto and H. Fruchtl, Compo and Chem. (accepted). 
10. T. Schreiber, F. Hofmann and P. Otto, Parallel Computing (accepted). 



www.manaraa.com

On the Parallel Solution of 3D PDEs on a Network 
of Workstations and on Vector Computers 

M. Griebel and W. Huber and T. Stortkuhl and C. Zenger 

Institut fiir Informatik, Technische Universitat Miinchen 
Arcisstra8e 21, D-8000 Miinchen 2, Germany 

e-mail: griebel/huberw/stoertku/zenger@informatik.tu-muenchen.de 

Abstract. In this paper we study the parallel solution of elliptic partial 
differential equations with the sparse grid combination technique. This al
gorithmic concept is based on the independent solution of many problems 
with reduced size and their linear combination. We describe the algorithm 
for three-dimensional problems and discuss its parallel implementation on a 
network of HP720 workstations and on vector computers. 

1 Summary 

We present a parallel method for the solution of elliptic partial differential equations. 
In this so called combination method the solution is obtained by a certain linear com
bination of discrete solutions on different meshes. Then, only O(h;;1(log(h;;1))2) 
grid points are needed instead of O(h;;3) for three-dimensional problems, where 
hn = 2-n denotes the mesh size. The accuracy of the combination solution is of 
the order O(h~(log(h;;l»)2) provided that the solution is sufficiently smooth. This 
is only slightly worse than O(h~) obtained for the usual full grid solution. 
The natural coarse grain parallelism of the combination method makes it prefectly 
suited for MIMD parallel computers and distributed processing on workstation net
works. O«log(h;;1))2) problems of the size O(h;;l) must be solved independently 
and can therefore be computed fully in parallel. On a parallel computer or a net
work with P processors we achieve a data distribution with an amount of data of 
only O(h;;1(log(h;;1»2 / P) on every processor. Furthermore, the number of commu
nication steps is of order O( yip) and the amount of data to be exchanged in each 
step is O(h;;l (Iog(h;; 1»2/(p . yip)). Therefore, the communication cost is only of 
O(h;; 1 (Iog(h;; 1 »2 / P) and thus only dependent on the size of data assigned to one 
processor. 
For the three-dimensional case, we report the results of numerical experiments on a 
network of 110 HP720-workstations and on a CRAY Y-MP4/464. 

2 The combination method 

We consider a partial differential equation 

Lu = f 



www.manaraa.com

277 

in the unit cube {} = [0,1]3 C lR,3 with a linear, elliptic operator L of second order 
and appropriate boundary conditions. 
The usual approach is to discretize the problem by a finite element or finite difference 
method on an equidistant grid Dn,n,n with grid size hn = 2- n in X-, y- and z-direction 
and to solve the arising linear system of equations 

Then, we get a solution un,n,n with error en,n,n = U - un,n,n = O(h~), if U is suffi
ciently smooth. Here, we assume that un,n,n represents an appropriate interpolant 
defined by the values of the discrete solutions on grid Dn,n,n. For the solution of 
the discrete system, one of the most effective techniques is the multigrid method 
[8J. There, roughly speaking, the number of operations is of the order O(h;;2) and 
is therefore proportional to the number of grid points. 
Extending this standard approach, we now study linear combinations of discrete so
lutions of the problem on different rectangular grids. Let Di,i,k be the uniform grid 
on D with mesh sizes hi = 2- i , hj = 2- j and hie = 2- k in X-, y- and z-direction, 
respectively. 
To this end, we consider the so-called combination technique 

U~,n,n 2: Ui,j,k - 2 . 2: U;,i,k + 2: ui,i,k (1) 
i+;+k=n+2 ;+;+k=n+l i+i+k=n 

that has been introduced in [6J. Here, i, j, k ranges from 1 to n. This method is 
illustrated in Fig. 1. Note that our approach can be interpreted as a special case of 
multivariate extrapolation [2], and is a generalization of the technique in [3J and [9]. 

Thus, we have to solve (n + 1)· n/2 different problems L',i,leUi,i,k = fi,i,k. i + j + k = 
n+2, each with about 2n unknowns, n.(n-l)/2 different problems L.,j,kU.,j,k = fi,;,k, 
i + j + k = n + 1, each with about 2n - 1 unknowns and (n - 1) . (n - 2)/2 different 
problems Li,;,kUi,j,k = fi,;,k, i + j + k = n, each with about 2n - 2 unknowns and 
combine their tri-linearly interpolated solutions. This gives a solution defined on the 
so-called sparse grid D~ n n' see Fig. 2. The sparse grid D~ n n is a subset of the 
associated full grid Dn,n:n: For further details on sparse grid~, ~ee [13]. 
Altogether, the combination method involves O(h;;llog(h;;I)2) unknowns in con

trast to O(h;;3) unknowns for the conventional full grid approach. Additionally, the 
combination solution u~,n,n is nearly as accurate as the standard solution Un,n,n. It 
can be proved (see [6]) that the error satisfies 

e~,n,n = U - u~,n,n = O(h~log(h~I)2), 

(pointwise and with respect to the L2- and Loo-norm). This is only slightly worse 
than for the associated full grid where the error is of the order O(h~). For the proof 
we assume that U is sufficiently smooth, so that for U',j,k (interpolated from grid 
Di,j,k to the domain D) an error splitting of the form 

Ui,j,k = U + C 1(h.)hl + C2(hj )hJ + C3(hk)h~+ 
D1(h., hj)h;hJ + D2(hi' hk)hlh~ + D3(hj, hk)hJhh (2) 
E(h;, hj, hk)hlhJhi 



www.manaraa.com

278 

+ + 

+ + + 

-2 -2 -2 

+ 

Fig. 1. The linear combination of grids ilU,l: with i+j+k=n+2, i+j+k=n+l and 
i+j+k=n, n=3. 

holds for any fixed point (x, y, z) E il with functions C1(hi), C2(hj), C3 (hj), Dl (hi, hj), 
D 2(hi ,hk ). D3 (hj ,hk), and E(hi,hj,hk) bounded by a constant C for all hi,hj,hk. 
This is a requirement different (and weaker) than what is used for usual Richardson 
extrapolation. If we insert the error splitting formula (2) into (1), we see that the 
leading error terms cancel. We get the estimation 

The combination technique is not restricted to the unit cube. In the two-dimensional 



www.manaraa.com

279 

Fig. 2. The sparse grid !tj,3,3 and the associated full grid !t3 ,3,3. 

case we have successfully treated problems on distorted quadrilaterals, triangles, and 
more general domains with polygonal boundaries. Additionally, problems with a non
linear operator and PDE-systems like the Stokes and Navier-Stokes equations have 
been solved (see (6) and (7)). 
To some extent, the combination method even works in the case of non-smooth 
solutions ([6». However, for problems with severe singularities the appropriate com
bination of adaptively refined grids is recommended. For further results on the com
bination method as sparse grid problem solver (see [3], [4], [5], and [6] ). 
We remark that all the different discrete problems whose solutions have to be com
bined are totally independent of each other and can be solved fully in parallel. This 
will be exploited in the following section. 

3 Parallelization aspects of the combination method on 
distributed memory systems 

Now, we study the parallelization properties of the combination technique for dis
tributed memory computers and networks of workstations, On these types of parallel 
computing systems, any efficient parallel implementation of an algorithm needs a rea
sonable load distribution and balancing strategy and a sophisticated communication 
procedure that minimizes the data exchange. 

3.1 Parallel execution and a simple load balancing strategy 

The combination method provides a straightforward way for parallelization, For 
our three-dimensional problem, n . (n + 1)/2 problems with about 2n unknowns, 
(n -1), n/2 problems with about 2n - 1 unknowns, and (n - 2). (n -1)/2 problems 
with about 2n - 2 unknowns can be solved fully in parallel (see also (1)). This paral
lelization potential of the combination method can be gained already on a relatively 
coarse grain level and makes it perfectly suited for distributed memory computers 
and networks of workstations. 



www.manaraa.com

local processes 
Pl,l P l ,2 ... Pl,ml 

Processor 1 

280 

local processes 
P 2 ,l P 2 ,2 ••• P 2,m2 

Processor 2 

Fig.3. Configuration of processes on P different processors. 

local processes 
PP,l PP,2 ••. Pp,mp 

Processor P 

Additionally, the subproblem solver (e.g. multigrid) can be parallelized. This, how
ever, requires a comparatively fine grain parallelization. In addition to the natural 
coarse grain parallelism, this can only be exploited on massively parallel systems 
wi th thousands of processors. Alternatively, the subproblems are ideal for vectoriza
tion In this paper, we focus on the coarse grain parallelization approach only. 
Let the solution tti,i,li: of each subproblem on the grid ili,i,l: that arises in the formula 
(1) be computed by a muItigrid-like method where the number of operations involved 
is proportional to the number of grid-points of ili,i,li:' We will not go into details but 
consider the respective procedure as a given black-box solver that is implemented as 
a UNIX-process, for example. Note however, that the respective multigrid method 
also has to work for distorted grids, ego by employing semi-coarsening techniques. 
For details on muItigrid-methods, see [8]. Of course, alternatively, any other (sub
optimal but available) solver could instead be plugged in. 
Now, the task remains to distribute the different solution processes among the avail
able processors or workstations and to set up an appropriate communication struc
ture between the processes and between the processors. Compare also Fig. 3. 
First, let us consider the problem how to distribute the different solution processes 

efficiently. The different sizes of the various problems suggest the following simple 
load balancing strategy: Assume that the problems are sorted according to their 
size where the size is specified by the number of interior grid points of the respective 
problem. Assume further, that P processors are available. Then, the first P problems 
are distributed among the P processors. If after this step not all problems have been 
assigned to processors, the remaining problems are distributed among the proces
sors in such a way, that now the largest problem is assigned to one of the processors 
with the smallest associated problem. This scheme is continued until all problems 
are distributed among the processors. See Fig. 4 for a simple example with n=3 and 
P=4. 
Here, 10 problems are distributed among four processors (according to the explained 



www.manaraa.com

0 3 ,1,1 

size=7 

0 1 ,2,2 

size=9 

0 1 ,1,2 

size=3 

O2 ,1,1 

size=3 

O2 ,1,2 

size=9 

281 

0 1 ,1,1 
size=l 

0 1 ,2,1 

size=3 

02,2,1 

size=9 

Fig.4. A first simple load balancing strategy, P = 4. 

0 1 ,3,1 

size=7 

0 1,1,3 

size=7 

load balancing strategy). So, processor PI has to compute problems of a total size of 
16, P2 has to compute problems of total size of 15, P3 has to compute problems of 
total size of 13 and P4 has to compute problems of total size of 14, Since we assign a 
whole problem to a process we are of course not able to obtain a perfectly balanced 
load distribution. However, for sufficiently large values of n, we obtain between two 
processors a 

maximum load difference: 
and a load per processor: 

O(2n-l) 
O(h~l(log(h~l ))2/ P). (3) 

To achieve a better load balancing, we would have to further subdivide the different 
problems by means of the domain decomposition technique. However, this compli
cates the subproblem solver and results in additional communication requirements. 

3.2 Distributed memory, distributed data and efficient communication 

In the previous section 2 we have already seen that the combination technique re
duces the number of grid points and thus the memory requirements from O(h~3) 
for the full grid case to O(h;;-I(log(h~l)?) for the sparse grid case. Already in the 
sequential version, this allows the computation of problems on much finer grids than 
in the full grid case or, alternatively, a much faster computation of the solution on 
the sparse grid than on the corresponding full grid since substantially less operations 
are now involved. 



www.manaraa.com

282 

On a parallel computing system with distributed memory, the data for the combina
tion solution can be processed and stored in a certain distributed manner that makes 
the combination method even more attractive. 
First, we note that each problem arising in the combination formula (1) involves 
only O(h~l) unknowns. Now, we do not perform the summation and subtraction 
operations of (1) to form the combination solution u~ n n explicitly but just keep all 
the different solutions Ui,j,k in the memory of the pr~~essor where they have been 
computed in parallel anyway. In this way, the combination solution is stored implic
itly in terms of the operands of the formula (1) but it is not yet processed explicitly. 
In practice, the solution is often wanted in certain special points or in a small sub-

•••• 
Fig.5. Communication 1 +-+ p bottleneck 

domain of [} only. Furthermore, in some applications, only certain integral values 
of the solution, like for example the Nusselt-number ([10)) in laminar flow problems 
or the rms-mean values in turbulence simulation ([12]) is of interest. Thus, it is 
prohibitive to compute the combination solution u~ n n explicitly and to process the 
sought values from it. Often, it is more advisable t~ ~ompute the values of interest 
first from each Ui,j,k separately (and in parallel) and only to combine these values 
analogously to (1). This avoids unnecessary communication between the processes 
and processors and overcomes the problem to maintain additional main memory for 
the explicitly computed u~ n n on one of the available processors. 
Now, let us explain the fu~ther consequences of the distributed, implicit storing of 
the combination solution in terms of its combination operands Ui,j,k by a praxis
relevant example. Consider a non-linear problem like the Navier-Stokes equations. A 
common approach to deal with nonlinearity is to linearize the discretized equations 
in an outer loop by a suitable method (e.g. Newton) and to iterate the arising linear 
system in an inner loop by a few multi grid V-cycles. This results in the well known 
and quite robust Newton-MG-method ([8)). 
Now, we substitute the combination method for the standard multigrid algorithm 
in the inner loop. Thus, we obtain an algorithm, where in every step an outer loop 
iteration needs the computation of a combination function (e.g. some sort of resid
ual) on the sparse grid similar to u~ n n. 

This type of algorithm also appears 'ie' we apply the combination method within an 
implicit time-stepping algorithm, together with the domain decomposition method, 



www.manaraa.com

283 

in a defect correction preconditioner for the sparse grid finite element method, to
gether with outer Richardson-type extrapolation [2] or within a solver for parabolic 
problems. 
At first glance, it seems that for this class of algorithms the combination solution 
u~ n n and their relevant outer loop counterparts (e.g. some sort of residual) have to 
be' a'ccumulated explicitly. This would cause a 1 +-+ P bottleneck for the communi
cation (see Fig.5) and results in a number of O(?) communication steps where the 
size of data to be exchanged is of O(h;:; 1 (log(h;:;1))2j?). Additionally, the storage 
requirement for the master process where the combination solution is assembled ex
plicitly would be of O(h;:;l(log(h;:;l)2). However, this can be avoided by using the 
distributed implicit storage scheme of the combination solution in terms of its com
bination operands Ui,j,l:. 

The basic idea is never to assemble u~ n n explicitly but only to exchange that 
data between adjacent processors that is' ~elevant and necessary for the respective 
algorithm. Thus, the outer loop computation can be performed locally and in a dis
tributed and parallel manner. This reduces the communication costs substantially 
and results in a slight modification of our first simple load balancing strategy. Now, 

Fig. 6. An array-like topology for a network of workstations 

we are not longer only interested in balancing the processor loads as good as pos
sible but we additionally want our problems and their respective processes to be 
distributed in a way, that communication only has to take place between adjacent 
processors and that the amount of data to be communicated is minimized in some 
sense. 



www.manaraa.com

284 

An analysis of the outer loop type algorithm with inner loop combination method 
solver showed that we only have to exchange the data between two processors Por 

and P{3 that is associated 

n;.; .• on p~ 
(4) 

Now, for the approach as described in Fig. 5, it is not longer necessary to maintain 
memory of the size O(h;;l(log(h;;l »2) in one processor to store u~ n n explicitly, but 
the number of communication steps would still be O(P) and the ~~ount of data to 
be exchanged in each step would still be O( h;; 1 (log( h;; 1»2/ P). 
This can be improved by the following method. First, we arrange the processors in 

~ 
~ 

Fig.7. Exchange of data between adjacent processors in an array-like topology 

an array-like topology (see Fig.6). Now, we exploit the possibility that the processors 
can exchange data at the same time in parallel. The main idea is that the relevant 
data Do:{3 of (4) can be partitioned into disjoint subsets, that is 

• 
Do:(3 = I.±J D~(3' (5) 

;=1 

where s equals nearly the square root of P, i.e. s ::::: ,;po Now, it can be shown that 
for any Da{3 and D{3"'( of two adjacent pairs of processors (Pa, P(3) and (P(3, P",(), a 



www.manaraa.com

285 

data partitioning (5) can be found with 

D~p n D~-y = 0 (6) 

for all i = 1 ... s. Thus, these disjoint sets of data D~p and D~-y can be exchanged 
fully in parallel between any two adjacent pairs of processors (Pa , Pp) and (Pp, P-y). 
The surprising advantage of this data partitioning is, that, in O( VP) communi
cation steps, the whole relevant data Dap is not only transferred between adjacent 
processors, but also between any pair of processors Pa and Pp in the given array-like 
topology of processors. This is achieved by using only communication between adja
cent processors. Thus, even for P = O((log( h;; 1 ))2) processors, we need only O( VP) 
communication steps. In each step, the size of data to be exchanged between adja
cent processors is O(h;;l /VP). Therefore, we achieve the remarkable communication 
complexity of order O(h;;l). Thus, the cost of communication is theoretically inde
pendent of the number of processors. 
We can estimate the whole communication time by 

(7) 

where T is proportional to the communication time to exchange data of the size 
O( h;; 1 ), c is some constant independent of the number of processors P and t letup 

denotes the setup-time for each communication between adjacent processors. For 
practical applications the setup-time is in the range of msec whereas T grows lin
ear with the size of data that is of several Mbyte. Thus, the communication is 
totally dominated by T and practically independent of the number P of processors. 
Due to this fact, we obtain a scalable parallel communication up to the number of 
O((log(h;;l ))2) of processors in the array-like topology of Fig. 6. 
To show the main ideas in more detail we discuss the communication algorithm for 
the first summation of the operands ui,i,k of formula (1) with i + j + k = n + 2 and 
n = 4. For reasons of simplicity, we neglect the other summation and subtraction 
operations and state that these can be managed in an analogous way. 
So, we have to consider n . (n + 1)/2 = 10 problems on the different grids []i,i,k, 
i + j + k = 6. Each of the problems is computed on one of the P = 10 processors 
(Fig.6) in parallel. Now, our task is to combine the computed data of each grid []i,i,k 
according to formula (1) by parallel communication only between adjacent proces
sors. Thus, we subdivide the data of any two adjacent pairs of processors like in (5) 
in such a way that (6) is fulfilled. Thus, for example, we get disjoint sets of data D12' 
D;4 and D~7' i = 1,2,3, for the adjacent pairs of processors (Pl , P2), (P2, P4) and 
(P4 , P7 ) within the first column of processors of Fig.6. Analogous data partitioning 
in the other columns of Fig.6 enables us to exchange the D~p between any pair of 
processors (Pa , Pp) at the same time in parallel within a column and also within a 
row of Fig.6. 
Thus, first, the communication takes place within the columns downward for all 
i = 1,2,3. In 3 communication steps, all processors of a column have updated its 
operand ui,i,k by the relevant data of all processors placed above in Fig.6 according 
to formula (1). Secondly, the communication algorithm sweeps within a row from 
the left to the right in 3 further communication steps. These two first sweeps of 
our communication algorithm are visualized in Fig. 7. For example, after the second 



www.manaraa.com

286 

sweep, PIO already contains all updated relevant data of Ul,1,4. At this moment all 
other processors need data from the processor placed right or below in Fig.6. Thus, 
the data exchange algorithm sweeps the other way around, first, within the rows 
from the right to the left and then within the columns upward. (Now, the received 
data must not be processed but only stored.) This procedure also needs 6 commu
nication steps. Altogether, the number of communication steps is nearly 4·..;p, the 
size of data to be exchanged in each step is O(h;;l/..;p) and the whole amount of 
communication is O(h;;l). 
Furthermore, we are able to map the discussed parallelization and communication 
structure of Fig.7 to an array-like network of workstations (see Fig.6). Here, each 
workstation possesses only two links and is connected with up to four other worksta
tions, e.g. by a local Ethernet. Thus, we are able to efficiently perform a broadcast 
from each processor to all others by using only communication between adjacent 
processors with communications costs of O(h;;l), independent of the number of pro
cessors. 

4 Experiments on a network of high performance 
workstations 

In this section we turn to the results of our numerical experiments. To simplify the 
presentation we consider the simple three-dimensional model problem 

Llu = ° in [} = (0,1) x (0,1) x (0,1) (8) 

with Dirichlet boundary conditions on {)[} and the unique solution 

u = sinen)· sin(7rY) . sinh(v'27rZ)/sinh(v'27r). 

For the solution of the subproblems we use 10 V-cycles of a multigrid method with 
one step of eight color Gauss-Seidel pre-smoothing and one post-smoothing itera
tions. Note that our code uses full 27~point stencils that are derived from assembling 
tri-linear rectangular finite elements. 
First, we turn to the implementation of the combination method on a network of 

110 HP720 workstations. The workstations are organized in 11 clusters. Each clus
ter consists of a disc-server and 10 discless clients, each server with 32 MByte and 
each client with 16MByte main memory (see Fig. 8). It is noteworthy that the total 
memory capacity of this system is more than 1.9 GByte and thus larger than many 
machines presently considered as supercomputers. The HP720 workstation is based 
on HP's Precision RISe-architecture. This architecture achieves a peak-rate of 50 
MFlop per second, so that the peak rate of the network would be 5.5 GFlop per 
second. 
However, the peak rate is rarely obtained in practice. Even on a single workstation, 
the peak performance can only be obtained when floating point operands are stored 
in registers. The registers can be considered as the top level of a memory hierarchy, 
consisting of registers, cache (256 KByte), main memory, and, finally, virtual mem
ory. If data must be transferred from slower to faster memory in the hierarchy, the 



www.manaraa.com

287 

Subgroup 1 Subgroup 2 Subgroup 11 

Fig. 8. Workstation network configuration. 

performance may drop dramatically. Our present code (written in FORTRAN), that 
has been specially optimized, runs at more than 13 MFlop per second on a single 
processor. 
Of course, the application of the network as a parallel supercomputing system is 
handicapped by several constraints. The Ethernet connection is very slow compared 
to the processing speed of a single workstation. Furthermore, it is not possible to use 
the workstations as a dedicated system. Even at night hours when no regular users 
are present, it is difficult to control the effect of background processes on the elapsed 
time and performance. This is further complicated by the lack of tools supporting 
the evaluation of distributed applications in the network. 
For a first experiment we only implemented the simple communication structure of 
section 3.1 (see Fig. 5) on the network configuration of Fig. 8. In detail, we used 
the following procedure: A shell script is used to start the execution of the slave 
processes. This is done in two levels. The top-master starts cluster-master processes 
to the cluster servers. The cluster-masters then distribute the slave processes on the 
cluster-clients. Each master waits for the termination of its sub-masters or slaves, 
respectively, which stores the computed result in an associated file (e.g. a named 
pipe). When all slaves have terminated, the master collects the results from the 
files to calculate the final solution. For this purpose, we use the network file system 
(NFS). 

With this implementation we measured the times that are shown in Table 1. Table 
2 shows the performance. With 110 slave processors we achieved a rate of approxi
mately 1.1 GFlop per second. Fig. 9 shows the resulting speed up and efficiency for 
varying problem sizes and processor numbers. There, an efficiency of more than 70 
percent can be seen for a sufficient large value of n. 

5 Experiments on the CRAY Y-MP4/464 vector computer 

Now, we turn to the results gained on vector computers. First, note that the MG 
solver applied in the combination method for the solution of each arising problem can 
be vee tori zed easily. This results in a substantial speed up in comparison to scalar 



www.manaraa.com

I> , 
~ • • 
~ 

288 

Table 1. Times (in sec.) for the combination algorithm on [}~.n.n for a network with P 
HP720-workstations as slaves. 

P\n 4 5 6 7 8 9 10 11 12 13 14 
1 0.11 0.34 1.01 2.90 8.01 21.42 55.24 139.60 351.84 943.37 2503.38 
2 0.07 0.20 0.55 1.53 4.06 10.89 28.23 71.87 179.84 481.58 1265.4 
4 0.05 0.12 0.29 0.83 2.07 5.50 14.33 35.54 90.09 241.57 644.21 
8 - - 0.20 0.42 1.14 2.75 7.29 18.55 45.34 123.83 328.31 
16 - - 0.12 0.22 0.61 1.45 3.64 9.14 22.93 63.69 166.25 
32 - - 0.08 0.16 0.32 0.90 2.05 4.84 12.36 36.59 89.66 
64 - - 0.24 0.31 0.44 0.67 1.38 2.68 6.63 18.16 47.45 
liD - - - - - - 1.26 2.40 4.72 12.81 30.42 

Table 2. MFlop per second for the combination algorithm on [}~.n.n for a network with P 
HP720-workstations as slaves. 

P\n 4 5 6 7 8 9 10 11 12 13 14 
1 7.90 10.00 11.57 12.65 13.45 13.94 14.43 14.73 14.67 13.44 12.21 
2 12.40 17.00 21.25 23.97 26.53 27.42 28.24 28.61 28.70 26.32 24.16 
4 17.36 28.33 40.31 44.19 52.03 54.29 55.63 57.86 57.28 52.47 47.46 
8 - - 58.45 87.33 94.48 108.57 109.38 110.86 113.82 102.36 93.13 
16 - - 97.42 166.73 176.57 205.91 218.99 225.00 225.06 199.01 183.91 
32 - - 146.13 229.25 336.59 331.74 388.85 424.89 417.53 346.40 341.00 
64 - - 48.71 118.32 244.80 445.63 577.64 767.34 778.38 697.95 644.35 
110 - - - - - - 632.65 856.86 1093.36 989.45 1005.0B 

80 

60 

20 

10 12 8 10 12 
n: qrid-pa-ome1erld(h;) n: qrid-pa-ometer Id(h;) 

Fig.9. Speed up and efficiency of the network measured with respect to P 
slave-workstations. 



www.manaraa.com

289 

processors. Furthermore, if more than one processing unit is present, the storage of 
the machine is treated as shared memory. Therefore, the parallel access to the same 
part of the memory has to be sequentialized. To some extend, this can automatically 
be optimized by the compiler. However, such conflicts between successive accesses 
of different processes to the same memory bank result in additional time needed for 
conflict resolution. 
We presented in the previous section the concept of distributed data storage and 
parallel communication by using a partitioning of the relevant data to be exchanged 
between adjacent processors. Now, this data partitioning concept can be used to 
avoid memory contention. Consequently, the parallel use of several processing units 
of the vector computer is possible without significant loss of performance. 
For our experiments we used a CRAY Y-MP4/464 with four processing units and 
64 megawords main memory. The CRAY Y-MP is a typical vector computer with 
pipelining concept and a vector length of 64 elements. It has a peak-rate of 330 MFlop 
per second and per processing unit, so that the peak rate of the four processing units 
is about 1.3 GFlop per second. The four processing units can be used to compute 
different problems in parallel. In practice, we obtain with our code for one processing 
unit about 80 MFlop per second and for 4 processing units we obtain up to 200 MFlop 
per second. 

Table 3. Time (in sec.) for the combination algorithm on n~.n.n on a CRAY Y-MP4/464 
with P processing units. 

P\n 4 5 6 7 8 9 10 11 12 13 14 
1 0.09 0.25 0.60 1.39 3.09 6.87 14.95 33.33 73.40 163.30 361.88 
2 0.05 0.20 0.53 1.30 2.98 4.18 9.35 16.84 39.75 85.24 201.66 
3 0.04 0.14 0.37 1.09 2.55 4.79 5.62 12.00 28.85 69.70 171.43 
4 0.04 0.09 0.33 0.73 1.99 4.51 5.28 12.20 28.73 61.58 159.69 

Table 4. MFlop per second for the combination algorithm on n~.n.n on a CRA Y 
Y-MP4/464 with P processing units. 

P\n 4 5 6 7 8 9 10 11 12 13 14 
1 14.56 18.14 23.08 23.31 36.97 44.81 53.80 61.41 69.31 76.01 82.15 
2 25.33 22.05 26.03 31.35 38.34 73.65 86.05 121.60 128.02 145.53 147.41 
3 31.97 31.95 37.24 37.25 44.77 64.25 143.34 170.58 188.91 177.92 173.44 
4 31.97 50.36 41.74 55.90 57.27 68.20 152.32 167.67 177.14 201.26 186.24 

We implemented the combination method on a CRAY Y-MP4/464 in FORTRAN 
using the autotasking facility cft77 with compiler version 4.0. Here, the solution of 
each problem is computed by a vectorized version of the multigrid algorithm. The 



www.manaraa.com

290 

parallel treatment of the different problems is indicated explicitly by the compiler 
directive CFPP$ CNCALL that exploits parallelism in concurrent loops. 
For the parallel version of the combination algorithm (parallel treatment of the differ
ent problems by explicit compiler directives) which was run on a CRAY Y-MP4/464 
with 4 processors, we measured the run times as shown in Table 3. The MFlop per 
second are shown in Table 4. Due to the fact that on the used CRAY Y-MP4/464 
not all four processing units but only 3 processing units are available in dedicated 
mode for one user, the measurements show a decrease of efficiency in the case of 
P = 4 processing units. 
We achieve on the CRAY fast execution times with fairly good speed up (e.g. with 
4 processors 2.83 for n=10) and efficiency (e.g. with 4 processors 70.75% for n=10). 
Additionally, for large n we obtain quite high MFlop rates. 
In principle the gain by parallelization behaves analogous to the results of the work
station cluster, but on a much better level. This is of course due to the superior 
processors of the CRAY and the vectorization. Nevertheless, with a network of 110 
workstations the comparable algorithm ran at about five times faster than on a 
CRAY Y-MP with 4 processors and nearly the peak performance of the CRAY 
Y-MP was reached (compare Table 2 and Table 3). 

6 Concluding remarks 

In this paper, we discussed the distributed and parallel solution of partial differential 
equations by combination type algorithms on a workstation network and on a CRA Y 
Y-MP4/464. 
The experiments show that for the combination technique a comparatively simple 
parallel computing model already leads to an efficient parallel implementation. How
ever, with the discussed load balancing strategy and parallel communication on an 
array-like topology of processors, we are able to avoid a bottleneck in communication. 
Thus, in the future time we will implement the combination method on an array-like 
network of workstations by using the parallel communication structure discussed in 
3.2. We expect this method to perform better with respect to the communication re
quirements. Furthermore, the scalability of the system and the combination method 
offers the possibility to compute very large problems with a high performance that 
arise in many practical fields like for example in fluid dynamics. 
For a certain class of practical algorithms we have seen that a network of worksta
tions can be a quite powerful parallel computing system. We believe that with the 
development of fast FDDI based communication links a network of workstations will 
he a real competitor to standard MIMD computers in near future. 
Hopefully, with parallel development and computing systems like TOPSYS (see [1]) 
or PVM (see [11]), a software basis becomes available that promises better per
formance together with improved monitoring and evaluation tools on workstation 
networks. 



www.manaraa.com

291 

References 

1. S. BAKER, H.-J. BEIER, T. BEMMERL, A. BODE, H. ERTL, U. GRAF, O. HANSEN, 
J. HAUNERDINGER, P. HOFSTETTER, R. KNODLSEDER, 
J. KREMENEK, S. LANGENBUCH, R. LINDHOF, T. LUDWIG, P. LUKSCH, R. MILNER, 
B. RIES, AND T. TREML, TOPSYS - tools for parallel systems, SFB Bericht 342/13/91 
A, Institut fiir Informatik, TU Miinchen, June 1991. 

2. H. BUNGARTZ, M. GRIEBEL, AND U. RUDE, Extrapolation, Combination and Sparse 
Grid Techniques for Elliptic Boundary Value Problems, in International conference on 
spectral and high order methods, ICOSAHOM 92, C. Bernardi and Y. Maday, eds., 
Elsevier, 1992. also available as SFB Bericht 342/10/92 A. 

3. M. GRIEBEL, The combination technique for the sparse grid solution of PDE's on mul
tiprocessor machines, Parallel Processing Letters, 2 (1992), pp. 61-70. also available 
as SFB Bericht 342/14/91 A. 

4. --, Sparse grid multilevel methods, their parallelization, and their applications to 
CFD, in Proceedings of the conference of Parallel Computational Fluid Dynamics, 
1. Hauser, ed., Elsevier, May 1992. 

5. M. GRIEBEL, W. HUSER, U. RUDE, AND T. STORTKUHL, The Combination Technique 
lor Parallel Sparse-Grid-Preconditioning and -Solution of PDEs on Multiprocessor Ma
chines and Workstation Networks, in Proceedings of the Second Joint International 
Conference on Vector and Parallel Processing CONPAR/VAPP V 92, 1. Bouge and 
M. Cosnard and Y. Robert and D. Trystram, ed., Springer Verlag, 1992. also available 
as SFB Bericht 342/11/92 A. 

6. M. GRIEBEL, M. SCHNEIDER, AND C. ZENGER, A combination technique for the so
lution of sparse grid problems, SFB Bericht 342/19/90, Institut fiir Informatik, TU 
Miinchen, October 1990. Also to be published in: Proceedings of the International 
Symposium on Iterative Methods in Linear Algebra, Bruxelles, April 2-4, 1991. 

7. M. GRIEBEL AND V. THURNER, The efficient solution of fluid dynamics problems by 
the combination technique, sfb bericht, Institut fiir Informatik, TU Miinchen, 1992. to 
be published. 

8. W. HACKBUSCH, Multigrid Methods and Applications, Springer Verlag, Berlin, 1985. 
9. J. P. HENNART AND E. H. MUND, On the h- and p-versions of the extrapolated gor

don's projector with applications to elliptic equations, SIAM J. Sci. Comput., 9 (1988), 
pp. 773-791. 

10. M. PERIC, M. SCHAEFER, AND E. SCHRECK, Numerical solution of complex fluid flows 
on MIMD computers, in Proceedings of the conference of Parallel Computational Fluid 
Dynamics, J. Hauser, ed., Elsevier, May 1992. 

11. V. SUNDERAM, PVM: a framework for parallel and distributed computing, tech. report, 
Emory University, Department of Mathematics and Computer Science, Atlanta, GA 
30322, USA, 1991. 

12. H. TENNEKES AND J. L. LUMLEY, A first course in turbulence, M.LT. Press, 1972. 
13. C. ZENGER, Sparse grids, in Parallel Algorithms for Partial Differential Equations, 

Proceedings of the Sixth GAMM-Seminar, Kiel, January 19-21, 1990, W. Hackbusch, 
ed., Braunschweig, 1991, Vieweg-Verlag. 



www.manaraa.com

Numerical Simulation of Complex Fluid Flows 
on MIMD Computers 

M. Peric, M. Schafer and E. Schreck 

Lehrstuhl fiir Stromungsmechanik, Universitat Erlangen-Niirnberg, 
Cauerstr. 4, D-8520 Erlangen, Germany 

Abstract. The paper analyses the efficiency of parallel computation of 
incompressible fluid flows using a fully implicit finite volume multigrid 
method. The parallelization is achieved via domain decomposition, which 
is chosen for its suitability in complex geometries when blockstructured 
or unstrucutured grids are employed. Numerical efficiency (increase of 
computing effort to reach converged solution) and parallel efficiency (in
crease of runtime due to local and global communication) are analysed 
for a typical recirculating flow induced by buoyancy. Good efficiencies are 
found and the possibilities for further improvement by avoiding some glo
bal communication or by simultaneous computation and communication 
are indicated. 

1 Introduction 

Calculation of fluid flows in complex geometries requires the use of either block
structured or unstructured grids. Except for extremely complex configurations, 
the block-structured grids have the advantage of allowing the use of efficient 
solvers developed for structured grids. 

When solving steady flow problems (either laminar or Reynolds-averaged 
turbulent flows), implicit methods are usually used. In most cases, the variables 
are decoupled and linearized equations for each variable are solved in turn. The 
solution method involves two iteration levels, which are here called outer and 
inner iterations. In the inner iterations, large linear equation systems are solved, 
whose coefficient matrix is sparse and within each block has a diagonal structure. 
The outer iteration loop provides for the update of the coefficient and source 
matrices in order to take into account the non-linearity and coupling of the 
equations for the individual variables. 

The outer iterations are explicit in nature, since the coefficient and source 
matrices are calculated using variable values from the previous outer iteration. 
This part of the solution algorithm is therefore easily parallelized. On the other 
hand, inner iterations are implicit and pose special requirements to be perfor
med in parallel. While the Jacobi, the so called "red-black" GauB-Seidel iteration 
methods and conjugate gradient solvers can be parallelized in a straightforward 
way, the parallelization of the ILU method without changing the algorithm in
troduces idle times for some processors and is not always efficient (Bastian and 
Horton, [1]). 



www.manaraa.com

293 

Recently, the present authors presented a parallel implicit solution method 
based on grid partitioning technique, using the ILU solver after Stone [9] for 
the inner iterations and a full-approximation multigrid scheme for the outer 
iterations (Schreck and Perie, [8]; Perie et al, [7]). This approach is easy to 
implement and can be used for both block-structured and unstructured grids. 
The present paper concentrates on the analysis of the numerical and parallel 
efficiency of the parallel solution method and indicates the ways of improving 
them. 

2 Description of Solution Method 

The solution method used in this study is described in detail by Demirdzie and 
Perie [2], so only a summary of main features will be given here. The method is of 
finite volume type and uses non-orthogonal boundary-fitted grids with a coloca
ted arrangement of variables. Figure 1 shows a typical control volume (CV). The 
working variables are the cartesian velocity components, pressure and tempera
ture. The continuity equation is used to obtain a pressure-correction equation 
according to the SIMPLE algorithm (Patankar and Spalding, [6]). Second or
der discretization is used for all terms (central differences, linear interpolation). 
The part of diffusion fluxes which arises from grid non-orthogonality is treated 
explicitly. The convection fluxes are treated using the so called "deferred cor
rection" approach: only the part which corresponds to the first order upwind 
discretization is treated implicitly, while the difference between the central dif
ferencing and upwind fluxes is treated explicitly. The effect of non-orthogonality 
is also treated explicitly in the pressure-correction equation. In the first step, the 
pressure-correction equation is solved with these terms excluded (which suffices 
if the grid is not severely non-orthogonal). In the second step the non-orthogonal 
contribution is evaluated using the pressure correction calculated in the first step, 
and a second pressure-correction equation is solved. It has the same coefficient 
matrix as the first one but a different source term. 

Equations for the cartesian velocity components U and V, pressure correc
tion p' and temperature Tare discretized and solved one after another. Linear 
algebraic equation systems are solved iteratively using either the GauE-Seidel 
method (GS) or the ILU-decomposition (SIP) after Stone [9]. Inner iterations 
are stopped either after reducing the absolute sum of residuals over all CVs 
by a specified factor, or after a prescribed number of iterations has been per
formed. Outer iterations are performed to take into account the non-linearity, 
coupling of variables and effects of grid non-orthogonality; this is why the linear 
equations need not be solved accurately. Computation is stopped when at the 
beginning of an outer iteration the sum of absolute residuals over all CVs in all 
equations becomes 4 to 5 orders of magnitude smaller than the initial values. 
This roughly corresponds to a 4-5 digit accuracy. For steady flow calculations 
considered in this study, under-relaxation is used to improve the convergence 
of outer iterations. Typical values of under-relaxation factors range between 0.5 
and 0.8 for the velocity components and temperature. The fraction of pressu-



www.manaraa.com

294 

NW N NE o 
j+l o 

E 
W 

p 

Fig. 1. A typical control volume and a computational molecule 

re correction added to pressure after solving the pressure-correction equation is 
typically equal to 1 - au, where au is the under-relaxation factor for velocities. 
This leads to a nearly-optimum convergence rate. A flow diagram of the outer 
and inner iterations (for the SIP solver) is shown in Fig. 2. 

The number of outer iterations increases linearly with the number of CVs, 
leading to a quadratic increase in computing time. For this reason a multigrid 
method is implemented, which keeps the number of outer iterations approxima
tely independent of the number of CVs. The method is based on the so called 
"full approximation scheme" (FAS). It is implemented in the so called "full mul
tigrid" (FMC) fashion. The solution is first obtained on the coarsest grid using 
the method described above, cf. Fig. 2. This solution provides initial fields for the 
calculation on the next finer grid, where the multigrid method using V-cycles is 
activated. The procedure is continued until the finest grid is reached. The coarse 
grids are subsets of the finest grid; each coarse grid CV is made of four CVs of 
the next finer grid. The equations solved on the coarse grids within a multigrid 
cycle contain an additional source term which describes the current solution and 
the residuals of the next finer grid. The multigrid method used in this study is 
described in detail in Hortmann et al [5]. It should be noted that the multigrid 
method is applied only to the outer iteration loop; inner iterations are performed 
with one of the above described solvers irrespective of the grid fineness. This is 
due to the fact that the linear equations need not be solved accurately, so only 
a few inner iterations are necessary. Only for the pressure-correction equation 
would the implementation of a multigrid solver result in a reduction of compu
ting time on fine grids, because it converges more slowly and may require higher 
accuracy, especially in case of unsteady flows. Any of the above described solvers 
could be used as a smoother within such a multigrid solver. 



www.manaraa.com

295 

3 Parallelization Strategy and Efficiency 

3.1 Grid Partitioning Technique 

Domain decomposition technique is the basis of the parallelization strategy used 
in the present study. It is completely analogous to the block-structuring of grid 
in complex geometries. The number of blocks is dictated by the geometry of the 
solution domain, and the number of CVs within each block may vary substanti
ally. However, we may create more blocks than the geometry requires. The aim 
is to have as many sub domains of approximately the same size as there are pro
cessors, and assigning each subdomain to one processor. If some blocks are much 
smaller than the others, more than one block may form a sub domain assigned 
to one processor. 

The subdomains do not overlap, i. e. each processor calculates only varia
ble values for CVs within its subdomain. However, each processor uses some 
variable values which are calculated by other processors to which neighboured 
subdomains are assigned. This requires, in case of MIMD computers with dis
tributed memory, an overlap of storage: each processor stores data from one or 
more layers of CVs belonging to neighbour sub domains along its boundary. The
se data are exchanged between processors, typically after each inner iteration. 

The grid may be calculated on one processor and then partitioned into sub
domains which are assigned to individual processors; however, in case of large 
problems we may specify for each processor its subdomain boundaries and gene
rate the grid locally. The grid coordinates at sub domain boundaries must match, 
since the CV faces are common to two subdomains. In two-dimensional applica
tions the sub domains have a shape of logical rectangles. Ideally, each subdomain 
has four neighbours; however, in case of complex geometries this may not be al
ways achievable, so one side of one subdomain may be shared with two or more 
neighbour subdomains. This increases communication overhead for processors 
assigned to such subdomains. Such poblems will not be considered here. 

The solution strategy for block-structured grids will be described by conside
ring a quadrilateral solution domain subdivided into four subdomains (blocks) 
as shown in Fig. 3. The discretization of the partial differential equation for the 
variable ¢ leads at each CV to an algebraic equation of the form 

(1) 

where the indices E, W, N, Sand P represent the nodes of the computational 
molecule, cf. Fig. 1. The coefficients A arise from implicit parts of the convection 
and diffusion fluxes, and Q is the source term (which includes all explicitly 
treated terms from the discretized equation). For the whole solution domain 
there results an equation system which can be written in matrix form as 

[A]{¢} = {Q} , (2) 

where {¢} is the column matrix containing variable values at CV centers ordered 
in a certain way, {Q} is the corresponding column matrix containing the source 



www.manaraa.com

START 

END 

GC: Broadcast 
conv. decission 

296 

ENTRY 

Yes 

RETURN 

LC: Exchange 
variable values 

GC: Collect abs. 
residual sums 

GC: Broadcast 
conv. decision 

Fig. 2. Flow chart of the outer (left) and the inner (right) iteration loop (SIP solver) 

term and [AJ is the coefficient matrix. If the nodes are ordered within each 
block by starting at the southwest corner, proceeding northwards along the first 
column of CVs and then eastwards to the last column, than in case of a five 
point computational molecule the coefficient matrix [AJ has the structure shown 
in Fig. 3 for an example with four subdomains. The diagonal block matrices 
[Aid are the main matrices of the subdomains and have the same form as the 
matrix [AJ would have if the whole domain was considered as one block. The off
diagonal block matrices describe coupling of subdomains. For example, matrix 
[A12J of Fig. 3 describes coupling of block 1 with block 2 through the coefficient 
AN in CVs next to the north boundary of block 1. The block matrix [Ad in 
Fig. 3 describes coupling of block 1 with block 3 through the coefficient AE in 
CVs along east boundary of block 1. The block matrix [A14J has no non-zero 
entries, since blocks 1 and 4 do not have common interfaces. 



www.manaraa.com

297 

(/>1 Ql 
Solution domain 

<P2 Q2 2 i 4 I 
I 1----1 ---

<P3 Q3 1 I 3 I 
I 

<P4 Q1 

Fig. 3. Matrix structure for a quadrilateral domain subdivided into four subdomains 

On a single processor, one could adopt several possible iterative solution stra
tegies. In a parallel environment, the following iteration scheme is the simplest 
choice: 

(3) 

where [MiJ is the iteration matrix in block i, m is the iteration counter and index 
j defines neighbour blocks (j i- i; summation on j). In case of the GS solver, 
the matrix [Md is the lower triangular matrix of [Aii], whereas in case of the SIP 
solver, it is the product of some lower and upper triangular matrices [L,] and 
[UiJ. The iteration procedure need not be the same in each block; for example, 
one can use GS for small and SIP for large blocks. 

This way of iteratively solving the equation systems for the solution domain 
as a whole is adopted in this study. Each sub domain is treated within one inner 
iteration as if it were an independent solution domain; reference to nodes inside 
other subdomains is treated explicitly. The addition of explicit parts due to the 
coupling matrices shown above usually does not signinficantly slow down the 
convergence if the variable values along interfaces are updated after each inner 
iteration. This communication option is used in this study. 

Another option is to exchangt~ the interface variable values between proces
sors only after each outer iteration. This obviously decouples the subdomains 
within inner iterations completely and is bound to increase the number of outer 
iterations for large number of subdomains. In that case, heavier under-relaxation 
has to be employed to ensure convergence. This communication option is sui
table fo systems with small number of processors ans slow communication, like 
workstation dusters. It is investigated in Schreck and Peric [8] and will not be 
further considered here. 



www.manaraa.com

298 

3.2 Efficiency of Parallel Implementation 

The effectiveness of parallel computing can be characterized by the total effi
ciency, defined as the ratio of computing time on one processor using the most 
efficient serial algorithm, T" and the n-fold computing time using the paralleli
zed algorithm and n processors, Tn: 

(4) 

Schreck and Peric (1991) have shown that the total efficiency can be expressed 
as a product of three factors termed parallel (E~ar) , numerical (E~um) and 
load balancing (E~um) efficiency. These factors describe: (i) the increase of elap
sed time for a parallel computation due to communication between processors 
during which computation can not take place, (ii) the increase in the number 
of floating point operations per grid node required to reach the solution of the 
same accuracy when the number of subdomains is increased, and (iii) idle time 
of some processors due to uneven load. Communication can be further split into 
local and global; the former describes exchange of interface information between 
neighboured subdomains, and the latter gathering of some information (e. g. le
vel of residuals) from all processors to the "master" and broadcasting of some 
information (e. g. decision on convergence) from the master to all other pro
cessors. The difference is that the local communication runs in parallel, i. e. all 
processors are ~ except for the effect of unequal size of interfaces ~ involved in 
communication simultaneously. In case of global communication, only a certain 
number of processors is involved in communication at any time between begin 
and end of gathering or scattering of information. This is why the global commu
nication is the limiting factor for massive parallelization, unless communication 
and computation are allowed to take place simultaneously. 

One of the major factors affecting the efficiency of parallel flow prediction is 
the numerical efficiency. Domain decomposition introduces additional decoupling 
of linear equations for most solvers (exceptions are e.g. Jacobi and "red-black" 
Gaufi~Seidel). This usually leads to an increase in the number of both inner and 
outer iterations which are required to obtain a solution of prescribed accuracy 
compared to the calculation on one processor. The effect of domain decomposi
tion on the performance of the multigrid scheme for outer iterations as used in 
the present solution method is also of crucial importance. We shall investigate 
these effects through test calculations in the next section. 

Schreck and Peric [8] have shown that ~ for a chosen algorithm and com
munication pattern ~ the local and global communication can be expressed as 
a function of the computer parameters like latency time (/Ls), communication 
speed (MB/s), calculation speed (Mflops), grid size and number of processors 
used. This allows the prediction of parallel efficiency and the optimization by 
varying the communication modes and patterns. Comparisons of predicted and 
measured parallel efficiencies for various grid sizes, number of processors and 
different computers showed good agreement. 



www.manaraa.com

299 

As noted before, the parallel efficiency increases substantially if the compu
tation and communication can take place simultaneously. Most new generation 
parallel computers offer this possibility by using "communication coprocessors" . 
In Fig. 2 the local (LC) and global (GC) communications within the present 
solution algorithm are indicated. The solution algorithm can be rearranged to 
allow local communication to take place while doing calculations for the inner 
region, and performing calculations for CVs along interfaces at the end of each se
quence of operations. Only in case of coarse grids (which are always encountered 
in multigrid methods) may computation have to be halted until communication 
finishes. Global communication can also be overlayed with computation. For ex
ample, collection of residual levels and broadcasting of decision on convergence 
can be allowed to take time of one whole outer iteration: the convergence deci
sion can be based on the residual level of the previous outer iteration and the 
extrapolated convergence rate. The level of pressure correction at the reference 
location may also be taken from the previous iteration. This is possible since at 
convergence the level of pressure correction will be zero everywhere. 

In this study the computation is in principle halted while communication 
takes place. Although some parallel computers used allow for some kind of over
lapping of communication and computation, these options were not used. The 
results of test calculations presented here thus represent the worst case: the effi
ciency will be improved when communication and calculation can be overlapped. 
Local communication is done in pairs of processors: some are sending while others 
are receiving the data. Since all sub domains were of the same size and there was 
only one neighbour per interface, the communication pattern is simple and also 
allows the use of hard-wired communication channels on transputer systems. The 
gobal communication propagates in one direction like a wavefront, and then in 
the other direction sequentially from processor to processor. For a square array 
configuration of processors and given grid size, the local communication time 
is proportional to }, while the global communication is proportional to yin, 
where n is the number of processors. The parallel efficiency depends on the ratio 
of communicating to computing time; its dependence on n is (cf. Schreck and 
Perie, [8]): 

Epa.r = 1 
n 1 + an1/2 + bnn1/2 ' 

where a and b are constants. For a constant number of processors and a varying 
grid size, the parallel efficiency depends on the grid size as 

1 
E~ar = ---a------;bc--

1+--+-f"j\jCv Ncv V lV'n n 

where N~v is the number of CV per processor. These are the limiting factors 
which show that the global communication effects are the dominant ones. This 
will be demonstrated by test calculations presented in the next section. The 
effect of avoiding global communication within inner iterations (or of performing 
it while computing) will also be demonstrated in the next section. 



www.manaraa.com

300 

The load balancing effects arise from the fact that in complex geometries the 
subdomains may not have the same size or the same boundary surface. Further
more, complex boundary conditions on external boundaries - which exist only 
for some sub domains - may also cause delays. Algorithms for automatic grid 
partitioning usually optimize the size and shape of subdomains and the com
munication pattern, since many parallel computers communicate faster between 
directly connected processors than between remote ones. However, optimization 
of load balancing sometimes consumes more computer time than flow simulation, 
which requires for compromises to be made. In this study blocks of equal size are 
used, so that a load imbalance may arise only through the effects of boundary 
conditions on the outside domain boundary. 

4 Test Calculations and Analysis of Performance 

The test case analysed in this study is the buoyancy driven flow in an inclined 
cavity. Figure 4 shows predicted streamlines and isotherms. This is one of the 
benchmark test cases presented by Demirdzic et al [2]. All cavity walls are of the 
same area: the horizontal walls are adiabatic and the inclined walls (angle 45°) 
are isothermal. The temperature difference, cavity size and fluid properties are 
chosen such that for Prandtl number Pr = 0.1 the Rayleigh number Ra = 106 is 
obtained. Calculations were performed on each grid - starting with the coarsest 
one - until the sum of absolute residuals for each variable is reduced 5 orders of 
magnitude. Because the number of inner iterations was fixed, each outer itera
tion involves the same number of computing operations. Therefore, the number 
of outer iterations needed to reach the converged solution directly reflects the 
numerical efficiency of the grid partitioning. The increase in computing time 
per outer iteration is then due to communication only and reflects the parallel 
efficiency. In order to check the adequacy of the prescribed number of inner ite
rations, calculation was also done on a workstation where the sum of absolute 
residuals in the inner iteration loop was required to be reduced one order of 
magnitude. Table 1 shows the numbers of outer iterations and the computing 
times for these two cases. 

The number of outer iterations and computing times are almost identical for 
the three finest grids, which means that a good choice has been made for the 
prescribed number of inner iterations. Since the numerical efficiencies of the two 
approaches are identical, one can investigate the effect of the global communica
tion in the inner iterations on the total efficiency. To this end calculations were 
performed on three parallel computers using prescribed number of inner iterati
ons; however, in one set of calculations the global communication (GC) for the 
checking of convergence of inner iterations was performed (but the convergence 
criterion was such that it could not be satisfied before the maximum specified 
number of inner iterations was reached), and in one set it was omitted, cf. Fig. 
2. 

The three computers used were: Parsytec Supercluster, based on Transpu
ters T805 (30 MHz); Meiko Computing Surface, based on Transputers T800 



www.manaraa.com

301 

Fig. 4. Streamlines (above) and isotherms (below) for buoyancy driven flow in inclined 
cavity at Ra = 106 , Pr = 0.1 

Table 1. Number of outer iterations and computing time (seconds) on a SUN 
Sparcstation 1 + for calculations with variable and prescribed number of inner iterations 

Grid (CV) 
Variable No. Inner iter. Fixed No. Inner iter. 

No. outer iter. Comp.-time. No. outer iter. Comp.-time No. inner iter. 
10 x 10 200 14.3 181 13.4 5 (u,v,t) 10(p) 
20 x 20 129 45.4 135 46.3 5 (u,v,t) 10(p) 
40 x 40 87 140.7 86 1:35.5 4 (u,v,t) 8(p) 
80 x 80 46 323.4 46 311.0 4 (u,v,t) 7(p) 

160 x 160 25 777.4 25 7.53.7 4 (u,v,t) 6(p) 
320 x 320 22 2493.3 22 2402.6 4 (u,v,t) 6(p) 



www.manaraa.com

302 

(25 MHz); Intel IPSC/860, based on i860 Processor (40 MHz). The main factors 
effecting the performance (start-up or latency time tst, data transfer rate Rtn 
and computing speed T) are given in Table 2. 

Table 2. Characteristic data of computers used in calculations 

Computer T (Mfiops) fst(flS) R tr (MBs) 
Parsytec 0.55 84 1.5 

Meiko 0.5 20 1.5 
Intel 2.5 80 2.8 

Communication between processors was performed via hard-wired channels 
for the Meiko CS, and using Parix library for the Parsytec SC. On the Meiko CS 
and the IPSC/860 calculations were performed with 5 x 5 processors, while on 
the Parsytec SC, 5 x 5 and 10 x 10 processors were used. In Tables 3, 4 and 
5 numbers of outer iterations and computing times for the different computers 
and number of processors are presented. 

Table 3. Numbers of outer iterations and computing times (in seconds) for calculations 
on Meiko CS with 5 x 5 processors 

Grid No. outer iter. 
Computing time (Efficiency %) 

with GC in inner iter. without GC in inner iter. 
10 x 10 200 8.9 (18) 6.6 (25) 
20 x 20 135 15.1 (26) 12.2 (45) 
40 x 40 94 31.3 (51) 27.6 (58) 
80 x 80 51 55.5 (65) 52.5 (69) 

160 x 160 25 104.6 (84) 101.5 (87) 
320 X 320 22 294.1 (95) 291.0 (96) 

Comparison of table 1 with tables 3, 4 and 5 reveals that with 25 processors 
the number of outer iterations increased only on the third and fourth grid; on the 
two finest grids, the numerical efficiency is 100%. Furthermore, comparison with 
table 6 shows that the same is true for 100 processors. Moreover, 100 Processors 
require less outer iterations on the third grid than 25 Processors! In some cases, 
the method converges faster with domain decomposition than without, but this 
is rather an exception. The reason is that the effects of domain decomposition 
and under-relaxation can complement each other. Usually, the decoupling due 
to domain decomposition has the same effect on convergence as the reduction of 
the under-relaxation factor. Depending on the choice of under-relaxation factors 



www.manaraa.com

303 

Table 4. Numbers of outer iterations and computing times (in seconds) for calculations 
on IPSC/860 with 5 x 5 processors 

Grid (CV) No. out.er iter. Computing time (Efficiency %) 
with GC in inner iter. without GC in inner iter. 

10 x 10 200 18.6 (2) 10.3 (3) 
20 x 20 135 23.3 (5) lU (8) 
40 x 40 94 32.5 (10) 19.4 (16) 
80 x 80 51 38.3 (19) 26.2 (28) 

160 x 160 25 47.3 (37) 35.8 (50) 
320 x 320 22 85.0 (65) 73.3 (76) 

Table 5. Numbers of outer iterat.ions and comput.ing t.imes (in seconds) for calculations 
on Parsytec Supercluster with 5 x 5 processors 

Grid (CV) No. outer iter. 
Computing time (Efficiency %) 

with GC in inner iter. without GC in inner iter. 

10 x 10 200 18.8 (8) 11.2 (13) 
20 x 20 135 30.0 (16) 17.8 (28) 
40 x 40 94 49.7 (29) 34.0 (42) 
80 x 80 51 7l.2 (46) 56.5 (58) 

160 x 160 25 114.7 (69) 101.2 (78) 
320 x 320 22 289.8 (86) 278.0 (90) 

the convergence rate may be slowed down through domain decomposition (as is 
usually the case), but it may for some flows and grids also slightly improve. In 
any case, the domain decomposition method in conjunction with the multigrid 
algorithm for outer iterations is numerically very efficient. 

The reason for the good performance of FMG in connection with domain de
composition lies in the nature of multigrid methods. On the finest grid, only the 
high frequency error components are smoothed. These error components are of 
local character, so nodes near subdomain interfaces require only the information 
from few CVs across the interface. For this purpose, few inner iterations with 
an exchange of variable values after each are sufficient. The low frequency errors 
spread accross the whole solution domain; they are eliminated on the coarsest 
grids, where the CVs are so large that one exchange of variable values carries 
information far across the domain. By doing usually few more inner iterations 
on the coarsest grid, the result matches single block performance. 

The parallel efficiencies - which in the considered case are equal to the total 
efficiencies for the two finest grids - are strongly dependent on communication 
performance and the ratio of latency time to computing speed of the processor. 
This effect is best illustrated by comparing efficiencies for calculations with and 
without global communication (GC) in inner iterations. This global communica-



www.manaraa.com

304 

Table 6. Numbers of outer iterations and computing times (in seconds) for calculations 
on Parsytec Super cluster with 10 x 10 processors 

Grid (CV) No. outer iter. 
Computing time (Efficiency %) 

with GC in inner iter. without GC in inner iter. 

10 X 10 200 34.5 (1) 13.9 (3) 
20 x 20 135 43.4 (3) 18.7 (7) 
40 x 40 88 55.7 (6) 26.4 (14) 
80 x 80 52 65.7 (12) 36.3 (23) 

160 x 160 25 78.6 (25) 53.5 (37) 
320 x 320 22 144.4 (43) 119.7 (52) 

tion involves sending one 8 byte word (absolute residual sum) to the master and 
receiving one word (decision of convergence) from the master. The time required 
for this communication is - for a given number of processors - independent of 
grid fineness. 

With 25 processors the Meiko CS needs for the global communication wi
thin inner iterations about 3.1 s on the last three grids, the Parsytec SC needs 
about 12 s and the IPSC/860 about 11.5 s. With 100 processors, the Parsytec 
SC needs about 25 s. This is expected, since in the communication model used, 
the doubling of the number of processors in each direction means that the lon
gest message path (measured by the number of sen dings from one processor to 
another - diameter of the network) also doubles. The times consumed for the 
global communication on the three computers are also directly proportional to 
the latency time, cf. Table 2: Parsytec SC and IPSC/860 need about the same 
time and the Meiko CS needs four times less time. 

In case of the Meiko CS, the avoiding of global communication in inner 
iterations (or - which would be equivalent- simultaneous communication and 
calculation) does not result in a signinficant improvement of efficiency. This is 
due to the fact that the latency time is relatively low compared to the computing 
time (equivalent to 10 Flop). The effect becomes more important for the Parsytec 
SC (about 4% longer computing time on the finest grid and 13% on the next 
coarser one), due to the fact that its latency time is four times longer and 
its computing performance is somewhat better than that of the Meiko CS. The 
IPSC/860 suffers most from this effect: it needs 16% more computing time on the 
finest grid and 32% more on the next coarser grid, if the global communication 
in the inner iterations is performed. This is due to the fact that the latency time 
is the same as for the Parsytec SC but the computing performance is five times 
better. 

The global communications for the broadcast of the reference pressure and 
the convergence check consume less computing time than those in inner itera
tions (cf. Fig. 2), since these are done only once per outer iteration, whereas 
within inner iterations there are 4 to 10 global communications for each equati
on solved, i.e. over 20 per outer iteration. For high processor numbers the global 



www.manaraa.com

305 

communication clearly becomes the limiting factor of the computations, which 
is obvious from a comparision of tables 5 and 6: the parallel efficiency drops 
from 90% to 52% when the number of processors is increased from 25 to 100 
(for the finest grid). Simultaneous communication and computation is a way 
to further improve the efficiency of parallel computing. Special communication 
coprocessors can be optimized for fast communication, since they need not do 
computation. Transputers appear to be suitable for this purpose. 

5 Conclusions 

Results of fluid flow and heat transfer calculations with the parallelized version 
of an implicit multigrid finite volume solution method and the analysis presented 
in the preceeding sections allow for the following conclusions to be made: 

The test calculations showed that the numerical efficiency of the multigrid al
gorithm is close to 100% when domain decomposition is used as the basis for 
parallelization on MIMD computers, and when interface data are exchanged 
between processors after each inner iteration. 

It is computationally more efficient to prescribe the number of inner iterati
ons rather then checking convergence for each inner iteration. The possible 
increase in the number of outer iterations is more than compensated by the 
reduction in the number of inner iterations and by avoiding much of the 
global communication. This is especially true for computers with relatively 
high latency time compared to computing speed. 

Efficiency of parallel computation can be signifcantly improved by overlay
ing communication and computation. The present solution algorithm allows 
this to a large degree and the new generation parallel computers offer that 
possibility. 

It is therefore the most essential matter that the numerical method retains 
its effectiveness when parallelized, i.e. to achieve high numerical efficiency. The 
efficiencies are expected to be higher for three-dimensional applications, since 
the number of floating point operations per CV and iteration is much higher 
than in the two-dimensional case, so that the effect of latency diminishes. It 
is thus obvious that parallel computing is very suitable for computational fluid 
dynamics. Implicit finite volume solution methods are adaptable for efficient ap
plication on all parallel systems, from workstation clusters to massively parallel 
computers. 

6 Acknowledgements 

The Comission of the European Communities sponsored via "Parallel Computing Ac
tion" a part of the Meiko Computing Surface used in this study. The institute for ap
plied mathematics of the research center Jiilich and the institute for computer science 
of Technical University Munich provided access to IPSC/860 computer. The authors 
thank for this support. 



www.manaraa.com

306 

References 

1. P. Bastian and G. Horton: "Parallelization of robust multi-grid methods: ILU facto
rization and frequency decomposition method", in W. Hackbusch and R. Rannacher 
(eds.), Notes on Numerical Fluid Mechanics, Vol. 30, Vieweg, Braunschweig, 1989, 
pp.24-36. 

2. 1. Demirdzie and M. Perie:"Finite volume method for prediction of fluid flow in 
arbitrarily shaped domains with moving boundaries", Int. 1. Num. Methods in Fluids, 
10,771-790 (1990). 

3. 1. Demirdzie, Z. Lilek and M. Perie: "Fluid flow and heat transfer test problems 
for non-orthogonal grids: benchmark solutions", Int. 1. Num. Methods in Fluids, 15, 
329-354 (1992). 

4. M. Hestens and E. Stiefel: "Methods of conjugate gradients for solving linear sy
stems", Nat. Bur. Standards 1. Res., 49, 409-436 (1952). 

5. M. Hortmann, M. Perie and G. Scheurer: "Finite volume multigrid prediction of 
laminar natural convection: bench-mark solutions", Int. 1. Numer. Methods Fluids, 
11, 189-207 (1990). 

6. S. V. Patankar and D. B. Spalding: "A calculation procedure for heat, mass and mo
mentum transfer in three-dimensional parabolic flows", Int. 1. Heat Mass Transfer, 
15, 1787-1806 (1972). 

7. M. Perie, M. Schafer and E. Schreck: "Computation of fluid flow with a parallel 
multi-grid solver", in K.G. Reinsch et al. (Eds.), Proc. Int. Conference on "Parallel 
Computational Fluid Dynamics", Elsevier, Amsterdam, 1991. 

8. E. Schreck and M. Perie: "Computation of fluid flow with a parallel multi-grid 
solver", Int. 1. Num. Methods in Fluids, 16, 303 - 327 (1993). 

9. H.L. Stone: "Iterative solution of implicit approximations of multi-dimensional par
tional differential equations", SIAM 1. Numer. Anal., 5, 530-558 (1968). 



www.manaraa.com

Index 

ab initio 266 
actions 192 
adaptive partitioning 246, 254 
address hashing 102, 103 
agents 196 
algorithm 305 
aliasing 173 
AND-problems 50 
application concept 25 
approximate state space method 84 
approximation method 80 
assignment 166 
automatic parallelization 118 
automatic test pattern generation 234 
bandwidth 1, 56 
barrier synchronization 106, 107, 109, 

111,112, 116 
basis functions 267 
beamsplitter 7 
benefit functions 53 
benefit rate 55 
block-structured grids 292, 295 
block-structuring 295 
bounding methods 80 
broadcast 286 
bulk-synchronous parallelism (BSP) 

106, 116 
cache coherence 103, 133 
candidates 92 
capsules 170 
causality 134 
central control management 239 
centralized components 89 
checker 33 
checkpointing 43 
CHORUS 90 
class 181, 186 
cluster 172 
coarse 215 
coarse grain parallelism 276 
collocation 183, 184 
collocation association 170 

combination technique 276 
combinational circuits 235 
combinatorial optimization 219 
combining network 112, 116 
communication channels 196 
communication memory 17 
communication memory interface 18 
communication system 191 
completion times 98 
components be located 94 
concurrency control 133 
concurrent file system 258 
connectionist semantic networks 216 
constant factors 102, 103, 115 
control 211 
control algorithms 204, 207 
control flow checking 35 
control loop 90 
control volume 293 
cooperation class 175 
cooperations 174 
coordination 22 
correctness 200 
cost rate 55 
coupling unit 18, 20 
CPU 91 
CPU-utilization 52 
creation of new processes 88 
crosstalk 12 
crystal orbital 266 
data skew 246,257 
data-flow analysis 120 
decision tree 237 
decision units 89 
design specification 190 
diagonalization 273 
dislocation association 170 
dislocation 183, 187 
distributed memory 87, 133, 279 
distributed memory multiprocessors 

246 
distributed object model 181 



www.manaraa.com

distributed self-management 238 
distributed shared memory (DSM) 

15, 102, ll6, 133, 159 
distributed snapshots 43 
distributed systems 190 
distributed user programs 25 
distributed-memory machine 230 
distribution 166 
distribution associations 170 
distribution groups 172 
distribution language 166 
distribution model 169 
distribution system 167 
distribution transparency 168 
domain decomposition 298, 302, 303 
domain decomposition technique 295 
dynamic load balancing 241 
dynamic load managment 88 
effective scalability 250 
efficiency 62, 102, 103, 105, 106, 108, 

109,110,111,112,113,115, 
270, 298 

eigenvalue problem 266 
elliptic partial differential equations 

276 
environment components 192 
error detection 33 
evalution unit 90 
event recorder 71 
event-driven monitoring 66 
excess parallelism 105, 106, 109, lll, 

ll2, ll3, ll5 
external sorting 246 
farming 268 
fault dependency 240 
fault handling 31 
fault parallelism 234 
fault simulator 238 
fault tolerance 31 
fault tolerant interconnection network 

38 
fault treatment 43 
fetch&op ll6 
fiber concentrator 8 
final placement 219 

308 

fine-grained parallelism ll8 
Finite State Machine (FSM) 235 
finite volume 293 
fluid flow 292, 305 
formal method 190 
frequency of synachronization 98 
functional program 191 
gang scheduling 26 
gate 173 
Gau"s-Seidel 292, 293 
Gaussian functions 267 
global communication 298,299,300, 

303, 304 
global instruction scheduling ll8 
global resource scheduling 88 
global synchronization 95, 96 
grand challenges 31 
granularity 99 
graph models 80 
graph search 2ll 
hard faults 44 
hardware monitoring 67 
Hartree-Fock 266 
hashing 104, 105, 106, 107 
heuristics 95, 96, 98 
holographic permutation elements 9 
horizontal parallelism 247 
horizontal parallelization 246 
hybrid monitoring 67 
HyperCube 241 
idle-time 89, 91, 93, 95, 96, 98, 99 
IL U method 292 
ILU solver 293 
ILU-decomposition 293 
image analysis and understanding 203 
imaging 6 
immutable objects 185 
implementation 190 
implicit finite volume solution meth-

ods 305 
implicit methods 292 
indifference association 170 
inefficiencies 103, 109, llO, ll3, 115 
inheritance 187 



www.manaraa.com

inner iteration 292, 293, 294, 295, 
297,299,300,303,304,305 

instruction scheduling 119 
Intel 270 
interconnection network 17, 19 
interconnection topologies 4 
interface 73 
interprocedural 120 
interrupt mechanism 26 
iPSC/2258 
island 173 
iteration matrix 297 
knowledge-based image understand-

ing 203 
large data volumes 246 
latency hiding 103, 106, 113 
latency reduction 103 
latency time 303, 304, 305 
leader task 26 
lengths of the ready queues 95 
liveness properties 193 
load balancing 87,88,279,298,300, 
load balancing effects 300 
load evalution unit 92, 94 
load imbalance 87, 92, 95, 98 
load management 87 
load managements testbed 93 
load measure 92 
load parameters 87, 89 
load sharing 87, 88 
local communication 298, 299 
local components 89 
local global communication 298, 299 
MACH 90 
mapping 87,96,98 
massive parallelism 102,103,111,116 
massively parallel computers 31 
master 33 
master application 26 
master-checker mode 33 
McCulloch Pitts neuron 92 
mean runtime 80 
measurement unit 90 
medium 215 
memory access analysis 121 

309 

memory access latencies 102, 103, 
105,115 

memory management 150 
memory randomization 103, 104 
MEMSOS 24 
MEMSY 15, 75, 274 
message-passing 27 
meta-abstraction 152 
meta-layer 152, 160 
meta-object 152 
meta-recursion 153 
method 305 
migration candidate 93, 95 
migration of data 89 
migration of running processes 90 
migration unit 90, 92 
MMK 247 
mobility 169 
monitoring system 90 
move..multicyde_op 126 
multigrid algorithm 305 
multigrid finite volume 305 
multigrid method 294, 303 
multiple beam splitter 8 
multiprocessor 87 
multiprogramming control 49 
multistage networks 9 
network of workstations 243, 276 
neutral networks and linear optimiza-

tion 211 
non-orthogonal 293 
non-series-parallel graphs 83 
numerical 298 
numerical efficiencies 298, 300, 302, 

305 
numerical functions 81 
object 181 
object cache 158 
object management 150 
object space 156 
object store 155, 160 
object-migration 159 
object-oriented operating system 150 
OlD 183 
open operating system 150, 161 



www.manaraa.com

optical backplane 4 
optical bus 7 
optimization 212 
optimization problem 204 
opto-ASIC 10 
OR-problem 50 
outer iteration 292, 293, 294, 297, 

299,300,302,303,304,305 
page fault 93 
parallel 298 
parallel checkpoint coordination 46 
parallel communication 285 
parallel efficiency 298,299, 300,303, 

305 
parallel programs 80 

310 

Parallel Random Access Machine (PRAM) 
104 

parallel slackness 105 
parallel solution 276 
parallel sorting 246 
parallelism 3 
parallelization 215 
partial order semantics 139 
partitioning 219 
PEPP 80 
percolation scheduling 120 
performance 103, 106, 108 
performance criteria 94 
performance evaluation 80, 106 
persistency 41 
persistent object 150, 154 
Petri nets 139 
power of a parallel system 63 
PRAM 105, 109 
PRAM emulation 104, 106 
preprocessor 35 
process migration 87, 93, 99 
process switching 106, 107, 109, 110, 

112, 113, 114, 115, 116 
processor nodes 17 
profit rate 55 
program analysis 118 
program graph 124 
programming model 22 
protection 42 

protocol development 191 
protocol hierarchy 195 
quantum mechanical methods 265 
Randomized Shared Memory (RSM) 

102, 103, 115, 116 
ready queue length 91, 96, 98, 99 
real-time computer vision 203 
redundancy 31 
refinement 195 
reflection 153, 162 
relative distribution 170 
requirements specification 190 
response time 55, 88 
rollback-recovery 43 
runtime distribution 80 
safety properties 193 
sampling 254 
scalability 31, 102 
SCF 266 
semantic network 203, 204, 205 
sequential circuits 234 
series-parallel 83 
service time 50 
shape functions 219 
shared disk multiprocessor architec

ture 246 
shared disk multiprocessors 249 
shared memory 23,28, 102, 105, 115, 

159, 
shared-memory machine 229 
sharing of nodes 87 
signatures 35 
SIMPLE algorithm 293 
simulation 102, 103, 106 
single user / single program 88 
slicing tree 220 
smart pixels 10 
soft faults 44 
software monitoring 67 
sparse grid 276, 277 
specification 137 
specification formalism 197 
speed-up 49, 270 
speedup characteristic 62 
stable storage 41 



www.manaraa.com

static load management 88 
stenning protocol 195 
stream-processing functions 190 
superlinear speedups 51 
superstep 105, 106 
SUPRENUM 270 
symbolic processing 204 
synchronisation 12 
synchronization frequencies 95 
synchronization tree 112 
system call for monitoring 77 
system components 192 
system development 190 
target faults 237 
tasks 25 
test pattern 234 
test pattern generation 234 
test problem 235 
test sequence 234 
theorem prover 50 
threshold values 95, 96, 99 
throughput 49 
time slice simulation 60 

311 

TOPSYS 247 
total efficiency 298 
traces 107, 108 
trace specifications 190 
TransBase 247 
transputer 107 
two-electron integrals 267 
two-level rollback 44 
two-phase commit protocol 44 
type 182 
type checking 188 
uniform object model 180, 181 
universal hashing 106 
variable 181, 185 
vector computers 276 
verification 133 
VLIW 125 
VLIW-Scheduler 129 
VLSI Layout 219 
watchdog processor 35 
weak coherence 135 
workstation network 228 
ZM468 



www.manaraa.com

Spri nger-Verlag 
and the Environment 

We at Springer-Verlag firmly believe that an 

international science publisher has a special 

obligation to the environment, and our corpo

rate policies consistently reflect th is conviction. 

We also expect our busi

ness partners - paper mills, printers, packag

ing manufacturers, etc. - to commit themselves 

to using environmentally friendly materials and 

production processes. 

The paper in this book is made from 

low- or no-chlorine pulp and is acid free, in 

conformance with international standards for 

paper permanency. 



www.manaraa.com

Lecture Notes in Computer Science 
For information about Vols. 1-660 
please contact your bookseller or Springer-Verlag 

Vol. 661: S. 1. Hanson, W. Remmele, R. L. Rivest (Eds.), 
Machine Learning: From Theory to Applications. VIII, 271 
pages. 1993. 

Vol. 662: M. Nitzberg, D. Mumford. T. Shiota, Filtering, 
Segmentation and Depth. VIII, 143 pages. 1993. 

Vol. 663: G. v. Bochmann, D. K. Probst (Eds.), Computer 
Aided Verification. Proceedings, 1992. IX, 422 pages. 
1993. 

Vol. 664: M. Bezem, 1. F. Groote (Eds.), Typed Lambda 
Calculi and Applications. Proceedings, 1993. VIII, 433 
pages. 1993. 

Vol. 665: P. Enjalbert, A. Finkel, K. W. Wagner (Eds.), 
STACS 93. Proceedings, 1993. XIV, 724 pages. 1993. 

Vol. 666: 1. W. de Bakker, W.-P. de Roever, G. Rozenberg 
(Eds.), Semantics: Foundations and Applications. Proceed· 
ings, 1992. VIII, 659 pages. 1993. 

Vol. 667: P. B. Brazdil (Ed.), Machine Learning: ECML-
93. Proceedings, 1993. XII, 471 pages. 1993. (Sub series 
LNAI). 

Vol. 668: M.-C. Gaudel, l.-P. louannaud (Eds.), TAPS OFT 
'93: Theory and Practice of Software Development. Pro
ceedings, 1993. XII, 762 pages. 1993. 

Vol. 669: R. S. Bird, C. C. Morgan, 1. C. P. Woodcock 
(Eds.), Mathematics of Program Construction. Proceedings, 
1992. VIII, 378 pages. 1993. 

Vol. 670: 1. C. P. Woodcock, P. G. Larsen (Eds.), FME 
'93: Industrial-Strength Formal Methods. Proceedings, 
1993. XI, 689 pages. 1993. 

Vol. 671: H. J. Ohlbach (Ed.), GWAI-92: Advances in 
Artificial Intelligence. Proceedings, 1992. XI, 397 pages. 
1993. (Subseries LNAI). 

Vol. 672: A. Barak, S. Guday, R. G. Wheeler, The MOSIX 
Distributed Operating System. X, 221 pages. 1993. 

Vol. 673: G. Cohen, T. Mora, O. Moreno (Eds.), Applied 
Algebra, Algebraic Algorithms and Error-Correcting 
Codes. Proceedings, 1993. X, 355 pages 1993. 

Vol. 674: G. Rozenberg (Ed.), Advances in Petri Nets 1993. 
VII, 457 pages. 1993. 

Vol. 675: A. Mulkers, Live Data Structures in Logic Pro· 
grams. VIII, 220 pages. 1993. 

Vol. 676: Th. H. Reiss, Recognizing Planar Objects Using 
Invariant Image Features. X, 180 pages. 1993. 

Vol. 677: H. Abdulrab, 1.·P. Pecuchet (Eds.), Word Equa
tions and Related Topics. Proceedings, 1991. VII, 214 
pages. 1993. 

Vol. 678: F. Meyer auf der Heide, B. Monien, A. L. 
Rosenberg (Eds.), Parallel Architectures and Their Effi
cient Use. Proceedings, 1992. XII, 227 pages. 1993. 

Vol. 679: C. Fermuller, A. Leitsch, T. Tammet, N. Zamov, 
Resolution Methods for the Decision Problem. VIII, 205 
pages. 1993. (Sub series LNAI). 

Vol. 680: B. Hoffmann, B. Krieg-Bruckner (Eds.), Program 
Development by Specification and Transformation. XV, 
623 pages. 1993. 

Vol. 681: H. Wansing, The Logic of Information Struc
tures. IX, 163 pages. 1993. (Subseries LNAI). 

Vol. 682: B. Bouchon-Meunier, L. Valverde, R. R. Yager 
(Eds.), IPMU '92 - Advanced Methods in Artificial Intel
ligence. Proceedings, 1992. IX, 367 pages. 1993. 

Vol. 683: G.J. Milne, L. Pierre (Eds.), Correct Hardware 
Design and Verification Methods. Proceedings, 1993. VIII, 
270 Pages. 1993. 

Vol. 684: A. Apostolico, M. Crochemore, Z. Galil, U. 
Manber (Eds.), Combinatorial Pattern Matching. Proceed
ings, 1993. VllI, 265 pages. 1993. 

Vol. 685: C. Rolland, F. Bodart, C. Cauvet (Eds.), Ad
vanced Information Systems Engineering. Proceedings, 
1993. Xl, 650 pages. 1993. 

Vol. 686: 1. Mira, 1. Cabestany, A. Prieto (Eds.), New 
Trends in Neural Computation. Proceedings, 1993. XVII, 
746 pages. 1993. 

Vol. 687: H. H. Barrett, A. F. Gmitro (Eds.), Information 
Processing in Medical Imaging. Proceedings, 1993. XVI, 
567 pages. 1993. 

Vol. 688: M. Gauthier (Ed.), Ada-Europe '93. Proceedings, 
1993. VIII, 353 pages. 1993. 

Vol. 689: J. Komorowski, Z. W. Ras (Eds.), Methodolo
gies for Intelligent Systems. Proceedings, 1993. XI, 653 
pages. 1993. (Subseries LNAI). 

Vol. 690: C. Kirchner (Ed.), Rewriting Techniques and 
Applications. Proceedings, 1993. XI, 488 pages. 1993. 

Vol. 691: M. Ajmone Marsan (Ed.), Application and Theory 
of Petri Nets 1993. Proceedings, 1993. IX, 591 pages. 1993. 

Vol. 692: D. Abel, B.C. Ooi (Eds.), Advances in Spatial 
Databases. Proceedings, 1993. XIII, 529 pages. 1993. 

Vol. 693: P. E. Lauer (Ed.), Functional Programming, 
Concurrency, Simulation and Automated Reasoning. Pro
ceedings, 1991/1992. Xl, 398 pages. 1993. 

Vol. 694: A. Bode, M. Reeve, G. Wolf(Eds.), PARLE '93. 
Parallel Architectures and Languages Europe. Proceedings, 
1993. XVlI, 770 pages. 1993. 

Vol. 695: E. P. Klement, W. Siany (Eds.), Fuzzy Logic in 
Artificial Intelligence. Proceedings, 1993. VIII, 192 pages. 
1993. (Subseries LNAI). 

Vol. 696: M.Worboys, A. F. Grundy (Eds.), Advances in 
Databases. Proceedmgs, 1993. X, 276 pages. 1993. 



www.manaraa.com

Vol. 697: C. Courcoubetis (Ed.), Computer Aided Verifi
cation. Proceedings, 1993. IX, 504 pages. 1993. 

Vol. 698: A. Voronkov (Ed.), Logic Programming and 
Automated Reasoning. Proceedings, 1993. XIII, 386 pages. 
1993. (Subseries LNAI). 

Vol. 699: G. W. Mineau, B. Moulin, J. F. Sow a (Eds.), 
Conceptual Graphs for Knowledge Representation. Pro
ceedings, 1993. IX, 451 pages. 1993. (Subseries LNAI). 

Vol. 700: A. Lingas, R. Karlsson, S. Carlsson (Eds.), Au
tomata, Languages and Programming. Proceedings, 1993. 
XII, 697 pages. 1993. 

Vol. 701: P. Atzeni (Ed.), LOGIDATA+: Deductive 
Databases with Complex Objects. VIII, 273 pages. 1993. 

Vol. 702: E. Borger, G. Jager, H. Kleine Btining, S. Mar
tini, M. M. Richter (Eds.), Computer Science Logic. Pro
ceedings, 1992. VIII, 439 pages. 1993. 

Vol. 703: M. de Berg, Ray Shooting, Depth Orders and 
Hidden Surface Removal. X, 201 pages. 1993. 

Vol. 704: F. N. Paulisch, The Design of an Extendible 
Graph Editor. XV, 184 pages. 1993. 

Vol. 705: H. Griinbacher, R. W. Hartenstein (Eds.), Field
Programmable Gate Arrays. Proceedings, 1992. VIII, 2 18 
pages. 1993. 

Vol. 706: H. D. Rombach, V. R. Basili, R. W. Selby (Eds.), 
Experimental Software Engineering Issues. Proceedings, 
1992. XVIII, 261 pages. 1993. 

Vol. 707: O. M. Nierstrasz (Ed.), ECOOP '93 - Object
Oriented Programming. Proceedings, 1993. XI, 531 pages. 
1993. 

Vol. 708: C. Laugier (Ed.), Geometric Reasoning for Per
ception and Action. Proceedings, 1991. VIII, 281 pages. 
1993. 

Vol. 709: F. Dehne, J.-R. Sack, N. Santoro, S. Whitesides 
(Eds.), Algorithms and Data Structures. Proceedings, 1993. 
XII, 634 pages. 1993. 

Vol. 710: Z. Esik (Ed.), Fundamentals of Computation 
Theory. Proceedings, 1993. IX, 471 pages. 1993. 

Vol. 711: A. M. Borzyszkowski, S. Sokolowski (Eds.), 
Mathematical Foundations of Computer Science 1993. Pro
ceedings, 1993. XIII, 782 pages. 1993. 

Vol. 712: P. V. Rangan (Ed.), Network and Operating Sys
tem Support for Digital Audio and Video. Proceedings, 
1992. X, 416 pages. 1993. 

Vol. 713: G. Gottlob, A. Leitsch, D. Mundici (Eds.), Com
putational Logic and Proof Theory. Proceedings, 1993. XI, 
348 pages. 1993. 

Vol. 714: M. Bruynooghe, J. Penjam (Eds.), Programming 
Language Implementation and Logic Programming. Pro
ceedings, 1993. XI, 421 pages. 1993. 

Vol. 715: E. Best (Ed.), CONCUR'93. Proceedings, 1993. 
IX, 541 pages. 1993. 

Vol. 716: A. U. Frank, I. Campari (Eds.), Spatial Informa
tion Theory. Proceedings, 1993. XI, 478 pages. 1993. 

Vol. 717: I. Sommerville, M. Paul (Eds.), Software Engi
neering - ESEC '93. Proceedings, 1993. XII, 516 pages. 
1993. 

Vol. 718: J. Seberry, Y. Zheng (Eds.), Advances in 

Cryptology - AUSCRYPT '92. Proceedings, 1992. XIII, 
543 pages. 1993. 

Vol. 719: D. Chetverikov, W.G. Kropatsch (Eds.), Compu
ter Analysis of Images and Patterns. Proceedings, 1993. 
XVI, 857 pages. 1993. 

Vol. 720: V Marik, J. Lazansky, RR. Wagner (Eds.), Data
base and Expert Systems Applications. Proceedings, 1993. 
XV, 768 pages. 1993. 

Vol. 721: J. Fitch (Ed.), Design and Implementation of 
Symbolic Computation Systems. Proceedings, 1992. VIII, 
215 pages. 1993. 

Vol. 722: A. Miola (Ed.), Design and Implementation of 
Symbolic Computation Systems. Proceedings, 1993. XII, 
384 pages. 1993. 

Vol. 723: N. Aussenac, G. Boy, B. Gaines, M. Linster, J.
G. Ganascia, Y. Kodratoff (Eds.), Knowledge Acquisition 
for Knowledge-Based Systems. Proceedings, 1993. XIII, 
446 pages. 1993. (Subseries LNAI). 
Vol. 724: P. Cousot, M. Falaschi, G. File, A. Rauzy (Eds.), 
Static Analysis. Proceedings, 1993. IX, 283 pages. 1993. 

Vol. 725: A. Schiper (Ed.), Distributed Algorithms. Pro
ceedings, 1993. VIII, 325 pages. 1993. 

Vol. 726: T. Lengauer (Ed.), Algorithms - ESA '93. Pro
ceedings, 1993. IX, 419 pages. 1993 

Vol. 727: M. Filgueiras, L. Damas (Eds.), Progress in Ar
tificial Intelligence. Proceedings, 1993. X, 362 pages. 1993. 
(Subseries LNAI). 

Vol. 728: P. Torasso (Ed.), Advances in Artificial Intelli
gence. Proceedings, 1993. XI, 336 pages. 1993. (Subseries 
LNAI). 

Vol. 729: L. Donatiello, R. Nelson (Eds.), Performance 
Evaluation of Computer and Communication Systems. Pro
ceedings, 1993. VIII, 675 pages. 1993. 

Vol. 730: D. B. Lomet (Ed.), Foundations of Data Organ i
zation and Algorithms. Proceedings, 1993. XII, 412 pages. 
1993. 

Vol. 731: A. Schill (Ed.), DCE - The OSF Distributed 
Computing Environment. Proceedings, 1993. VIII, 285 
pages. 1993. 

Vol. 732: A. Bode, M. Dal Cin (Eds.), Parallel Computer 
Architectures. IX, 31 I pages. 1993. 

Vol. 733: Th. Grechenig, M. Tscheligi (Eds.), Human Com
puter Interaction. Proceedings, 1993. XIV, 450 pages. 1993. 

Vol. 734: J. Volkert (ed.), Parallel Computation. Proceed
ings, 1993. VIII, 248 pages. 1993. 

Vol. 735: D. Bj¢rner, M. Broy, J. V. Pottosin (Eds.), For
mal Methods in Programming and Their Applications. Pro
ceedings, 1993. IX, 434 pages. 1993. 

Vol. 736: R. L. Grossman, A. Nerode, A. P. Ravn, H. 
Rischel (Eds.), Hybrid Systems. VIII, 474 pages. 1993. 

Vol. 737: J. Calmet, J. A. Campbell (Eds.), Artificial Intel
ligence and Symbolic Mathematical Computing. Proceed
ings, 1992. VIII, 305 pages. 1993. 




